Metamath Proof Explorer


Theorem elnonrel

Description: Only an ordered pair where not both entries are sets could be an element of the non-relation part of class. (Contributed by RP, 25-Oct-2020)

Ref Expression
Assertion elnonrel
|- ( <. X , Y >. e. ( A \ `' `' A ) <-> ( (/) e. A /\ -. ( X e. _V /\ Y e. _V ) ) )

Proof

Step Hyp Ref Expression
1 nonrel
 |-  ( A \ `' `' A ) = ( A \ ( _V X. _V ) )
2 1 eleq2i
 |-  ( <. X , Y >. e. ( A \ `' `' A ) <-> <. X , Y >. e. ( A \ ( _V X. _V ) ) )
3 eldif
 |-  ( <. X , Y >. e. ( A \ ( _V X. _V ) ) <-> ( <. X , Y >. e. A /\ -. <. X , Y >. e. ( _V X. _V ) ) )
4 opelxp
 |-  ( <. X , Y >. e. ( _V X. _V ) <-> ( X e. _V /\ Y e. _V ) )
5 4 notbii
 |-  ( -. <. X , Y >. e. ( _V X. _V ) <-> -. ( X e. _V /\ Y e. _V ) )
6 5 anbi2i
 |-  ( ( <. X , Y >. e. A /\ -. <. X , Y >. e. ( _V X. _V ) ) <-> ( <. X , Y >. e. A /\ -. ( X e. _V /\ Y e. _V ) ) )
7 opprc
 |-  ( -. ( X e. _V /\ Y e. _V ) -> <. X , Y >. = (/) )
8 7 eleq1d
 |-  ( -. ( X e. _V /\ Y e. _V ) -> ( <. X , Y >. e. A <-> (/) e. A ) )
9 8 pm5.32ri
 |-  ( ( <. X , Y >. e. A /\ -. ( X e. _V /\ Y e. _V ) ) <-> ( (/) e. A /\ -. ( X e. _V /\ Y e. _V ) ) )
10 6 9 bitri
 |-  ( ( <. X , Y >. e. A /\ -. <. X , Y >. e. ( _V X. _V ) ) <-> ( (/) e. A /\ -. ( X e. _V /\ Y e. _V ) ) )
11 3 10 bitri
 |-  ( <. X , Y >. e. ( A \ ( _V X. _V ) ) <-> ( (/) e. A /\ -. ( X e. _V /\ Y e. _V ) ) )
12 2 11 bitri
 |-  ( <. X , Y >. e. ( A \ `' `' A ) <-> ( (/) e. A /\ -. ( X e. _V /\ Y e. _V ) ) )