Metamath Proof Explorer


Theorem elo12r

Description: Sufficient condition for elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion elo12r ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ∧ ∀ 𝑥𝐴 ( 𝐶𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑀 ) ) → 𝐹 ∈ 𝑂(1) )

Proof

Step Hyp Ref Expression
1 breq1 ( 𝑦 = 𝐶 → ( 𝑦𝑥𝐶𝑥 ) )
2 1 imbi1d ( 𝑦 = 𝐶 → ( ( 𝑦𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑚 ) ↔ ( 𝐶𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑚 ) ) )
3 2 ralbidv ( 𝑦 = 𝐶 → ( ∀ 𝑥𝐴 ( 𝑦𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑚 ) ↔ ∀ 𝑥𝐴 ( 𝐶𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑚 ) ) )
4 breq2 ( 𝑚 = 𝑀 → ( ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑚 ↔ ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑀 ) )
5 4 imbi2d ( 𝑚 = 𝑀 → ( ( 𝐶𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑚 ) ↔ ( 𝐶𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑀 ) ) )
6 5 ralbidv ( 𝑚 = 𝑀 → ( ∀ 𝑥𝐴 ( 𝐶𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑚 ) ↔ ∀ 𝑥𝐴 ( 𝐶𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑀 ) ) )
7 3 6 rspc2ev ( ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀ 𝑥𝐴 ( 𝐶𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑀 ) ) → ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥𝐴 ( 𝑦𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑚 ) )
8 7 3expa ( ( ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ∧ ∀ 𝑥𝐴 ( 𝐶𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑀 ) ) → ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥𝐴 ( 𝑦𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑚 ) )
9 8 3adant1 ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ∧ ∀ 𝑥𝐴 ( 𝐶𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑀 ) ) → ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥𝐴 ( 𝑦𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑚 ) )
10 elo12 ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( 𝐹 ∈ 𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥𝐴 ( 𝑦𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑚 ) ) )
11 10 3ad2ant1 ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ∧ ∀ 𝑥𝐴 ( 𝐶𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑀 ) ) → ( 𝐹 ∈ 𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥𝐴 ( 𝑦𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑚 ) ) )
12 9 11 mpbird ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ∧ ∀ 𝑥𝐴 ( 𝐶𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑀 ) ) → 𝐹 ∈ 𝑂(1) )