Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
⊢ ( 𝑦 = 𝐶 → ( 𝑦 ≤ 𝑥 ↔ 𝐶 ≤ 𝑥 ) ) |
2 |
1
|
imbi1d |
⊢ ( 𝑦 = 𝐶 → ( ( 𝑦 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ↔ ( 𝐶 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ) ) |
3 |
2
|
ralbidv |
⊢ ( 𝑦 = 𝐶 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ) ) |
4 |
|
breq2 |
⊢ ( 𝑚 = 𝑀 → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ↔ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑀 ) ) |
5 |
4
|
imbi2d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝐶 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ↔ ( 𝐶 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑀 ) ) ) |
6 |
5
|
ralbidv |
⊢ ( 𝑚 = 𝑀 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑀 ) ) ) |
7 |
3 6
|
rspc2ev |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑀 ) ) → ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ) |
8 |
7
|
3expa |
⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑀 ) ) → ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ) |
9 |
8
|
3adant1 |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑀 ) ) → ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ) |
10 |
|
elo12 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( 𝐹 ∈ 𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ) ) |
11 |
10
|
3ad2ant1 |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑀 ) ) → ( 𝐹 ∈ 𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ) ) |
12 |
9 11
|
mpbird |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑀 ) ) → 𝐹 ∈ 𝑂(1) ) |