| Step |
Hyp |
Ref |
Expression |
| 1 |
|
alral |
⊢ ( ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) → ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ) |
| 2 |
1
|
alimi |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) → ∀ 𝑥 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ) |
| 3 |
|
alral |
⊢ ( ∀ 𝑥 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ) |
| 4 |
2 3
|
syl |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ) |
| 5 |
4
|
ralimi |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) → ∀ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ) |
| 6 |
|
ralcom |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ) |
| 7 |
|
ralcom |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ) |
| 8 |
7
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ) |
| 9 |
6 8
|
bitri |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ) |
| 10 |
5 9
|
sylib |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ) |
| 11 |
|
dftr2 |
⊢ ( Tr 𝑧 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ) |
| 12 |
11
|
ralbii |
⊢ ( ∀ 𝑧 ∈ 𝐴 Tr 𝑧 ↔ ∀ 𝑧 ∈ 𝐴 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ) |
| 13 |
|
df-po |
⊢ ( E Po 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) ) |
| 14 |
|
epel |
⊢ ( 𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦 ) |
| 15 |
|
epel |
⊢ ( 𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧 ) |
| 16 |
14 15
|
anbi12i |
⊢ ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) ↔ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) ) |
| 17 |
|
epel |
⊢ ( 𝑥 E 𝑧 ↔ 𝑥 ∈ 𝑧 ) |
| 18 |
16 17
|
imbi12i |
⊢ ( ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ↔ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ) |
| 19 |
|
elirrv |
⊢ ¬ 𝑥 ∈ 𝑥 |
| 20 |
|
epel |
⊢ ( 𝑥 E 𝑥 ↔ 𝑥 ∈ 𝑥 ) |
| 21 |
19 20
|
mtbir |
⊢ ¬ 𝑥 E 𝑥 |
| 22 |
21
|
biantrur |
⊢ ( ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ↔ ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) ) |
| 23 |
18 22
|
bitr3i |
⊢ ( ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ↔ ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) ) |
| 24 |
23
|
ralbii |
⊢ ( ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) ) |
| 25 |
24
|
2ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) ) |
| 26 |
13 25
|
bitr4i |
⊢ ( E Po 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ) |
| 27 |
10 12 26
|
3imtr4i |
⊢ ( ∀ 𝑧 ∈ 𝐴 Tr 𝑧 → E Po 𝐴 ) |