Metamath Proof Explorer


Theorem elpotr

Description: A class of transitive sets is partially ordered by _E . (Contributed by Scott Fenton, 15-Oct-2010)

Ref Expression
Assertion elpotr ( ∀ 𝑧𝐴 Tr 𝑧 → E Po 𝐴 )

Proof

Step Hyp Ref Expression
1 alral ( ∀ 𝑦 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) → ∀ 𝑦𝐴 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) )
2 1 alimi ( ∀ 𝑥𝑦 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) → ∀ 𝑥𝑦𝐴 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) )
3 alral ( ∀ 𝑥𝑦𝐴 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) → ∀ 𝑥𝐴𝑦𝐴 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) )
4 2 3 syl ( ∀ 𝑥𝑦 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) → ∀ 𝑥𝐴𝑦𝐴 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) )
5 4 ralimi ( ∀ 𝑧𝐴𝑥𝑦 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) → ∀ 𝑧𝐴𝑥𝐴𝑦𝐴 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) )
6 ralcom ( ∀ 𝑧𝐴𝑥𝐴𝑦𝐴 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) ↔ ∀ 𝑥𝐴𝑧𝐴𝑦𝐴 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) )
7 ralcom ( ∀ 𝑧𝐴𝑦𝐴 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) ↔ ∀ 𝑦𝐴𝑧𝐴 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) )
8 7 ralbii ( ∀ 𝑥𝐴𝑧𝐴𝑦𝐴 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) ↔ ∀ 𝑥𝐴𝑦𝐴𝑧𝐴 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) )
9 6 8 bitri ( ∀ 𝑧𝐴𝑥𝐴𝑦𝐴 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) ↔ ∀ 𝑥𝐴𝑦𝐴𝑧𝐴 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) )
10 5 9 sylib ( ∀ 𝑧𝐴𝑥𝑦 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) → ∀ 𝑥𝐴𝑦𝐴𝑧𝐴 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) )
11 dftr2 ( Tr 𝑧 ↔ ∀ 𝑥𝑦 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) )
12 11 ralbii ( ∀ 𝑧𝐴 Tr 𝑧 ↔ ∀ 𝑧𝐴𝑥𝑦 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) )
13 df-po ( E Po 𝐴 ↔ ∀ 𝑥𝐴𝑦𝐴𝑧𝐴 ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) )
14 epel ( 𝑥 E 𝑦𝑥𝑦 )
15 epel ( 𝑦 E 𝑧𝑦𝑧 )
16 14 15 anbi12i ( ( 𝑥 E 𝑦𝑦 E 𝑧 ) ↔ ( 𝑥𝑦𝑦𝑧 ) )
17 epel ( 𝑥 E 𝑧𝑥𝑧 )
18 16 17 imbi12i ( ( ( 𝑥 E 𝑦𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ↔ ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) )
19 elirrv ¬ 𝑥𝑥
20 epel ( 𝑥 E 𝑥𝑥𝑥 )
21 19 20 mtbir ¬ 𝑥 E 𝑥
22 21 biantrur ( ( ( 𝑥 E 𝑦𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ↔ ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) )
23 18 22 bitr3i ( ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) ↔ ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) )
24 23 ralbii ( ∀ 𝑧𝐴 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) ↔ ∀ 𝑧𝐴 ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) )
25 24 2ralbii ( ∀ 𝑥𝐴𝑦𝐴𝑧𝐴 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) ↔ ∀ 𝑥𝐴𝑦𝐴𝑧𝐴 ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) )
26 13 25 bitr4i ( E Po 𝐴 ↔ ∀ 𝑥𝐴𝑦𝐴𝑧𝐴 ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 ) )
27 10 12 26 3imtr4i ( ∀ 𝑧𝐴 Tr 𝑧 → E Po 𝐴 )