Metamath Proof Explorer


Theorem en1b

Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015)

Ref Expression
Assertion en1b ( 𝐴 ≈ 1o𝐴 = { 𝐴 } )

Proof

Step Hyp Ref Expression
1 en1 ( 𝐴 ≈ 1o ↔ ∃ 𝑥 𝐴 = { 𝑥 } )
2 id ( 𝐴 = { 𝑥 } → 𝐴 = { 𝑥 } )
3 unieq ( 𝐴 = { 𝑥 } → 𝐴 = { 𝑥 } )
4 vex 𝑥 ∈ V
5 4 unisn { 𝑥 } = 𝑥
6 3 5 syl6eq ( 𝐴 = { 𝑥 } → 𝐴 = 𝑥 )
7 6 sneqd ( 𝐴 = { 𝑥 } → { 𝐴 } = { 𝑥 } )
8 2 7 eqtr4d ( 𝐴 = { 𝑥 } → 𝐴 = { 𝐴 } )
9 8 exlimiv ( ∃ 𝑥 𝐴 = { 𝑥 } → 𝐴 = { 𝐴 } )
10 1 9 sylbi ( 𝐴 ≈ 1o𝐴 = { 𝐴 } )
11 id ( 𝐴 = { 𝐴 } → 𝐴 = { 𝐴 } )
12 snex { 𝐴 } ∈ V
13 11 12 syl6eqel ( 𝐴 = { 𝐴 } → 𝐴 ∈ V )
14 13 uniexd ( 𝐴 = { 𝐴 } → 𝐴 ∈ V )
15 ensn1g ( 𝐴 ∈ V → { 𝐴 } ≈ 1o )
16 14 15 syl ( 𝐴 = { 𝐴 } → { 𝐴 } ≈ 1o )
17 11 16 eqbrtrd ( 𝐴 = { 𝐴 } → 𝐴 ≈ 1o )
18 10 17 impbii ( 𝐴 ≈ 1o𝐴 = { 𝐴 } )