Metamath Proof Explorer


Theorem eusvnf

Description: Even if x is free in A , it is effectively bound when A ( x ) is single-valued. (Contributed by NM, 14-Oct-2010) (Revised by Mario Carneiro, 14-Oct-2016)

Ref Expression
Assertion eusvnf ( ∃! 𝑦𝑥 𝑦 = 𝐴 𝑥 𝐴 )

Proof

Step Hyp Ref Expression
1 euex ( ∃! 𝑦𝑥 𝑦 = 𝐴 → ∃ 𝑦𝑥 𝑦 = 𝐴 )
2 nfcv 𝑥 𝑧
3 nfcsb1v 𝑥 𝑧 / 𝑥 𝐴
4 3 nfeq2 𝑥 𝑦 = 𝑧 / 𝑥 𝐴
5 csbeq1a ( 𝑥 = 𝑧𝐴 = 𝑧 / 𝑥 𝐴 )
6 5 eqeq2d ( 𝑥 = 𝑧 → ( 𝑦 = 𝐴𝑦 = 𝑧 / 𝑥 𝐴 ) )
7 2 4 6 spcgf ( 𝑧 ∈ V → ( ∀ 𝑥 𝑦 = 𝐴𝑦 = 𝑧 / 𝑥 𝐴 ) )
8 7 elv ( ∀ 𝑥 𝑦 = 𝐴𝑦 = 𝑧 / 𝑥 𝐴 )
9 nfcv 𝑥 𝑤
10 nfcsb1v 𝑥 𝑤 / 𝑥 𝐴
11 10 nfeq2 𝑥 𝑦 = 𝑤 / 𝑥 𝐴
12 csbeq1a ( 𝑥 = 𝑤𝐴 = 𝑤 / 𝑥 𝐴 )
13 12 eqeq2d ( 𝑥 = 𝑤 → ( 𝑦 = 𝐴𝑦 = 𝑤 / 𝑥 𝐴 ) )
14 9 11 13 spcgf ( 𝑤 ∈ V → ( ∀ 𝑥 𝑦 = 𝐴𝑦 = 𝑤 / 𝑥 𝐴 ) )
15 14 elv ( ∀ 𝑥 𝑦 = 𝐴𝑦 = 𝑤 / 𝑥 𝐴 )
16 8 15 eqtr3d ( ∀ 𝑥 𝑦 = 𝐴 𝑧 / 𝑥 𝐴 = 𝑤 / 𝑥 𝐴 )
17 16 alrimivv ( ∀ 𝑥 𝑦 = 𝐴 → ∀ 𝑧𝑤 𝑧 / 𝑥 𝐴 = 𝑤 / 𝑥 𝐴 )
18 sbnfc2 ( 𝑥 𝐴 ↔ ∀ 𝑧𝑤 𝑧 / 𝑥 𝐴 = 𝑤 / 𝑥 𝐴 )
19 17 18 sylibr ( ∀ 𝑥 𝑦 = 𝐴 𝑥 𝐴 )
20 19 exlimiv ( ∃ 𝑦𝑥 𝑦 = 𝐴 𝑥 𝐴 )
21 1 20 syl ( ∃! 𝑦𝑥 𝑦 = 𝐴 𝑥 𝐴 )