| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evthf.1 |
⊢ Ⅎ 𝑥 𝐹 |
| 2 |
|
evthf.2 |
⊢ Ⅎ 𝑦 𝐹 |
| 3 |
|
evthf.3 |
⊢ Ⅎ 𝑥 𝑋 |
| 4 |
|
evthf.4 |
⊢ Ⅎ 𝑦 𝑋 |
| 5 |
|
evthf.5 |
⊢ Ⅎ 𝑥 𝜑 |
| 6 |
|
evthf.6 |
⊢ Ⅎ 𝑦 𝜑 |
| 7 |
|
evthf.7 |
⊢ 𝑋 = ∪ 𝐽 |
| 8 |
|
evthf.8 |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
| 9 |
|
evthf.9 |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
| 10 |
|
evthf.10 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 11 |
|
evthf.11 |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
| 12 |
7 8 9 10 11
|
evth |
⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑎 ) ) |
| 13 |
|
nfcv |
⊢ Ⅎ 𝑏 𝑋 |
| 14 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑏 |
| 15 |
2 14
|
nffv |
⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑏 ) |
| 16 |
|
nfcv |
⊢ Ⅎ 𝑦 ≤ |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑎 |
| 18 |
2 17
|
nffv |
⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑎 ) |
| 19 |
15 16 18
|
nfbr |
⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑎 ) |
| 20 |
|
nfv |
⊢ Ⅎ 𝑏 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑎 ) |
| 21 |
|
fveq2 |
⊢ ( 𝑏 = 𝑦 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 22 |
21
|
breq1d |
⊢ ( 𝑏 = 𝑦 → ( ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑎 ) ↔ ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑎 ) ) ) |
| 23 |
13 4 19 20 22
|
cbvralfw |
⊢ ( ∀ 𝑏 ∈ 𝑋 ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑎 ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑎 ) ) |
| 24 |
23
|
rexbii |
⊢ ( ∃ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑎 ) ↔ ∃ 𝑎 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑎 ) ) |
| 25 |
|
nfcv |
⊢ Ⅎ 𝑎 𝑋 |
| 26 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 27 |
1 26
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) |
| 28 |
|
nfcv |
⊢ Ⅎ 𝑥 ≤ |
| 29 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑎 |
| 30 |
1 29
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑎 ) |
| 31 |
27 28 30
|
nfbr |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑎 ) |
| 32 |
3 31
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑎 ) |
| 33 |
|
nfv |
⊢ Ⅎ 𝑎 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) |
| 34 |
|
fveq2 |
⊢ ( 𝑎 = 𝑥 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 35 |
34
|
breq2d |
⊢ ( 𝑎 = 𝑥 → ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑎 ) ↔ ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 36 |
35
|
ralbidv |
⊢ ( 𝑎 = 𝑥 → ( ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑎 ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 37 |
25 3 32 33 36
|
cbvrexfw |
⊢ ( ∃ 𝑎 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑎 ) ↔ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 38 |
24 37
|
bitri |
⊢ ( ∃ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑎 ) ↔ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 39 |
12 38
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑥 ) ) |