| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 2 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 3 |  | expmul | ⊢ ( ( 3  ∈  ℂ  ∧  3  ∈  ℕ0  ∧  3  ∈  ℕ0 )  →  ( 3 ↑ ( 3  ·  3 ) )  =  ( ( 3 ↑ 3 ) ↑ 3 ) ) | 
						
							| 4 | 1 2 2 3 | mp3an | ⊢ ( 3 ↑ ( 3  ·  3 ) )  =  ( ( 3 ↑ 3 ) ↑ 3 ) | 
						
							| 5 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 6 | 2 2 | nn0mulcli | ⊢ ( 3  ·  3 )  ∈  ℕ0 | 
						
							| 7 | 6 | nn0zi | ⊢ ( 3  ·  3 )  ∈  ℤ | 
						
							| 8 | 2 2 | nn0expcli | ⊢ ( 3 ↑ 3 )  ∈  ℕ0 | 
						
							| 9 | 8 | nn0zi | ⊢ ( 3 ↑ 3 )  ∈  ℤ | 
						
							| 10 |  | 1lt3 | ⊢ 1  <  3 | 
						
							| 11 | 1 | sqvali | ⊢ ( 3 ↑ 2 )  =  ( 3  ·  3 ) | 
						
							| 12 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 13 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 14 |  | 2lt3 | ⊢ 2  <  3 | 
						
							| 15 |  | ltexp2a | ⊢ ( ( ( 3  ∈  ℝ  ∧  2  ∈  ℤ  ∧  3  ∈  ℤ )  ∧  ( 1  <  3  ∧  2  <  3 ) )  →  ( 3 ↑ 2 )  <  ( 3 ↑ 3 ) ) | 
						
							| 16 | 10 14 15 | mpanr12 | ⊢ ( ( 3  ∈  ℝ  ∧  2  ∈  ℤ  ∧  3  ∈  ℤ )  →  ( 3 ↑ 2 )  <  ( 3 ↑ 3 ) ) | 
						
							| 17 | 5 12 13 16 | mp3an | ⊢ ( 3 ↑ 2 )  <  ( 3 ↑ 3 ) | 
						
							| 18 | 11 17 | eqbrtrri | ⊢ ( 3  ·  3 )  <  ( 3 ↑ 3 ) | 
						
							| 19 |  | ltexp2a | ⊢ ( ( ( 3  ∈  ℝ  ∧  ( 3  ·  3 )  ∈  ℤ  ∧  ( 3 ↑ 3 )  ∈  ℤ )  ∧  ( 1  <  3  ∧  ( 3  ·  3 )  <  ( 3 ↑ 3 ) ) )  →  ( 3 ↑ ( 3  ·  3 ) )  <  ( 3 ↑ ( 3 ↑ 3 ) ) ) | 
						
							| 20 | 10 18 19 | mpanr12 | ⊢ ( ( 3  ∈  ℝ  ∧  ( 3  ·  3 )  ∈  ℤ  ∧  ( 3 ↑ 3 )  ∈  ℤ )  →  ( 3 ↑ ( 3  ·  3 ) )  <  ( 3 ↑ ( 3 ↑ 3 ) ) ) | 
						
							| 21 | 5 7 9 20 | mp3an | ⊢ ( 3 ↑ ( 3  ·  3 ) )  <  ( 3 ↑ ( 3 ↑ 3 ) ) | 
						
							| 22 | 4 21 | eqbrtrri | ⊢ ( ( 3 ↑ 3 ) ↑ 3 )  <  ( 3 ↑ ( 3 ↑ 3 ) ) |