Metamath Proof Explorer


Theorem expnass

Description: A counterexample showing that exponentiation is not associative. (Contributed by Stefan Allan and Gérard Lang, 21-Sep-2010)

Ref Expression
Assertion expnass 333<333

Proof

Step Hyp Ref Expression
1 3cn 3
2 3nn0 30
3 expmul 33030333=333
4 1 2 2 3 mp3an 333=333
5 3re 3
6 2 2 nn0mulcli 330
7 6 nn0zi 33
8 2 2 nn0expcli 330
9 8 nn0zi 33
10 1lt3 1<3
11 1 sqvali 32=33
12 2z 2
13 3z 3
14 2lt3 2<3
15 ltexp2a 3231<32<332<33
16 10 14 15 mpanr12 32332<33
17 5 12 13 16 mp3an 32<33
18 11 17 eqbrtrri 33<33
19 ltexp2a 333331<333<33333<333
20 10 18 19 mpanr12 33333333<333
21 5 7 9 20 mp3an 333<333
22 4 21 eqbrtrri 333<333