| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 2 |  | leloe | ⊢ ( ( 0  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 0  ≤  𝐴  ↔  ( 0  <  𝐴  ∨  0  =  𝐴 ) ) ) | 
						
							| 3 | 1 2 | mpan | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  ≤  𝐴  ↔  ( 0  <  𝐴  ∨  0  =  𝐴 ) ) ) | 
						
							| 4 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 5 |  | sqval | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴 ↑ 2 )  =  ( 𝐴  ·  𝐴 ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴 ↑ 2 )  =  ( 𝐴  ·  𝐴 ) ) | 
						
							| 7 | 6 | breq1d | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 𝐴 ↑ 2 )  ≤  ( 𝐵  ·  𝐴 )  ↔  ( 𝐴  ·  𝐴 )  ≤  ( 𝐵  ·  𝐴 ) ) ) | 
						
							| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( ( 𝐴 ↑ 2 )  ≤  ( 𝐵  ·  𝐴 )  ↔  ( 𝐴  ·  𝐴 )  ≤  ( 𝐵  ·  𝐴 ) ) ) | 
						
							| 9 |  | lemul1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( 𝐴  ≤  𝐵  ↔  ( 𝐴  ·  𝐴 )  ≤  ( 𝐵  ·  𝐴 ) ) ) | 
						
							| 10 | 8 9 | bitr4d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( ( 𝐴 ↑ 2 )  ≤  ( 𝐵  ·  𝐴 )  ↔  𝐴  ≤  𝐵 ) ) | 
						
							| 11 | 10 | 3exp | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐵  ∈  ℝ  →  ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( ( 𝐴 ↑ 2 )  ≤  ( 𝐵  ·  𝐴 )  ↔  𝐴  ≤  𝐵 ) ) ) ) | 
						
							| 12 | 11 | exp4a | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐵  ∈  ℝ  →  ( 𝐴  ∈  ℝ  →  ( 0  <  𝐴  →  ( ( 𝐴 ↑ 2 )  ≤  ( 𝐵  ·  𝐴 )  ↔  𝐴  ≤  𝐵 ) ) ) ) ) | 
						
							| 13 | 12 | pm2.43a | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐵  ∈  ℝ  →  ( 0  <  𝐴  →  ( ( 𝐴 ↑ 2 )  ≤  ( 𝐵  ·  𝐴 )  ↔  𝐴  ≤  𝐵 ) ) ) ) | 
						
							| 14 | 13 | adantrd | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 )  →  ( 0  <  𝐴  →  ( ( 𝐴 ↑ 2 )  ≤  ( 𝐵  ·  𝐴 )  ↔  𝐴  ≤  𝐵 ) ) ) ) | 
						
							| 15 | 14 | com23 | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  <  𝐴  →  ( ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 )  →  ( ( 𝐴 ↑ 2 )  ≤  ( 𝐵  ·  𝐴 )  ↔  𝐴  ≤  𝐵 ) ) ) ) | 
						
							| 16 |  | sq0 | ⊢ ( 0 ↑ 2 )  =  0 | 
						
							| 17 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 18 | 16 17 | eqbrtri | ⊢ ( 0 ↑ 2 )  ≤  0 | 
						
							| 19 |  | recn | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  ∈  ℂ ) | 
						
							| 20 | 19 | mul01d | ⊢ ( 𝐵  ∈  ℝ  →  ( 𝐵  ·  0 )  =  0 ) | 
						
							| 21 | 18 20 | breqtrrid | ⊢ ( 𝐵  ∈  ℝ  →  ( 0 ↑ 2 )  ≤  ( 𝐵  ·  0 ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 0  =  𝐴  ∧  𝐵  ∈  ℝ )  →  ( 0 ↑ 2 )  ≤  ( 𝐵  ·  0 ) ) | 
						
							| 23 |  | oveq1 | ⊢ ( 0  =  𝐴  →  ( 0 ↑ 2 )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 24 |  | oveq2 | ⊢ ( 0  =  𝐴  →  ( 𝐵  ·  0 )  =  ( 𝐵  ·  𝐴 ) ) | 
						
							| 25 | 23 24 | breq12d | ⊢ ( 0  =  𝐴  →  ( ( 0 ↑ 2 )  ≤  ( 𝐵  ·  0 )  ↔  ( 𝐴 ↑ 2 )  ≤  ( 𝐵  ·  𝐴 ) ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 0  =  𝐴  ∧  𝐵  ∈  ℝ )  →  ( ( 0 ↑ 2 )  ≤  ( 𝐵  ·  0 )  ↔  ( 𝐴 ↑ 2 )  ≤  ( 𝐵  ·  𝐴 ) ) ) | 
						
							| 27 | 22 26 | mpbid | ⊢ ( ( 0  =  𝐴  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 ↑ 2 )  ≤  ( 𝐵  ·  𝐴 ) ) | 
						
							| 28 | 27 | adantrr | ⊢ ( ( 0  =  𝐴  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( 𝐴 ↑ 2 )  ≤  ( 𝐵  ·  𝐴 ) ) | 
						
							| 29 |  | breq1 | ⊢ ( 0  =  𝐴  →  ( 0  ≤  𝐵  ↔  𝐴  ≤  𝐵 ) ) | 
						
							| 30 | 29 | biimpa | ⊢ ( ( 0  =  𝐴  ∧  0  ≤  𝐵 )  →  𝐴  ≤  𝐵 ) | 
						
							| 31 | 30 | adantrl | ⊢ ( ( 0  =  𝐴  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  𝐴  ≤  𝐵 ) | 
						
							| 32 | 28 31 | 2thd | ⊢ ( ( 0  =  𝐴  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( ( 𝐴 ↑ 2 )  ≤  ( 𝐵  ·  𝐴 )  ↔  𝐴  ≤  𝐵 ) ) | 
						
							| 33 | 32 | ex | ⊢ ( 0  =  𝐴  →  ( ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 )  →  ( ( 𝐴 ↑ 2 )  ≤  ( 𝐵  ·  𝐴 )  ↔  𝐴  ≤  𝐵 ) ) ) | 
						
							| 34 | 33 | a1i | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  =  𝐴  →  ( ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 )  →  ( ( 𝐴 ↑ 2 )  ≤  ( 𝐵  ·  𝐴 )  ↔  𝐴  ≤  𝐵 ) ) ) ) | 
						
							| 35 | 15 34 | jaod | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 0  <  𝐴  ∨  0  =  𝐴 )  →  ( ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 )  →  ( ( 𝐴 ↑ 2 )  ≤  ( 𝐵  ·  𝐴 )  ↔  𝐴  ≤  𝐵 ) ) ) ) | 
						
							| 36 | 3 35 | sylbid | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  ≤  𝐴  →  ( ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 )  →  ( ( 𝐴 ↑ 2 )  ≤  ( 𝐵  ·  𝐴 )  ↔  𝐴  ≤  𝐵 ) ) ) ) | 
						
							| 37 | 36 | imp31 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( ( 𝐴 ↑ 2 )  ≤  ( 𝐵  ·  𝐴 )  ↔  𝐴  ≤  𝐵 ) ) |