| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝑁 )  →  𝑦  =  𝑁 ) | 
						
							| 2 | 1 | eqeq1d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝑁 )  →  ( 𝑦  =  0  ↔  𝑁  =  0 ) ) | 
						
							| 3 | 1 | breq2d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝑁 )  →  ( 0  <  𝑦  ↔  0  <  𝑁 ) ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝑁 )  →  𝑥  =  𝐴 ) | 
						
							| 5 | 4 | sneqd | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝑁 )  →  { 𝑥 }  =  { 𝐴 } ) | 
						
							| 6 | 5 | xpeq2d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝑁 )  →  ( ℕ  ×  { 𝑥 } )  =  ( ℕ  ×  { 𝐴 } ) ) | 
						
							| 7 | 6 | seqeq3d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝑁 )  →  seq 1 (  ·  ,  ( ℕ  ×  { 𝑥 } ) )  =  seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ) | 
						
							| 8 | 7 1 | fveq12d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝑁 )  →  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑦 )  =  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑁 ) ) | 
						
							| 9 | 1 | negeqd | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝑁 )  →  - 𝑦  =  - 𝑁 ) | 
						
							| 10 | 7 9 | fveq12d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝑁 )  →  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑦 )  =  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - 𝑁 ) ) | 
						
							| 11 | 10 | oveq2d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝑁 )  →  ( 1  /  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑦 ) )  =  ( 1  /  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - 𝑁 ) ) ) | 
						
							| 12 | 3 8 11 | ifbieq12d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝑁 )  →  if ( 0  <  𝑦 ,  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑦 ) ,  ( 1  /  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑦 ) ) )  =  if ( 0  <  𝑁 ,  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑁 ) ,  ( 1  /  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) | 
						
							| 13 | 2 12 | ifbieq2d | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝑁 )  →  if ( 𝑦  =  0 ,  1 ,  if ( 0  <  𝑦 ,  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑦 ) ,  ( 1  /  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑦 ) ) ) )  =  if ( 𝑁  =  0 ,  1 ,  if ( 0  <  𝑁 ,  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑁 ) ,  ( 1  /  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) ) | 
						
							| 14 |  | df-exp | ⊢ ↑  =  ( 𝑥  ∈  ℂ ,  𝑦  ∈  ℤ  ↦  if ( 𝑦  =  0 ,  1 ,  if ( 0  <  𝑦 ,  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ 𝑦 ) ,  ( 1  /  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝑥 } ) ) ‘ - 𝑦 ) ) ) ) ) | 
						
							| 15 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 16 |  | fvex | ⊢ ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑁 )  ∈  V | 
						
							| 17 |  | ovex | ⊢ ( 1  /  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - 𝑁 ) )  ∈  V | 
						
							| 18 | 16 17 | ifex | ⊢ if ( 0  <  𝑁 ,  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑁 ) ,  ( 1  /  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - 𝑁 ) ) )  ∈  V | 
						
							| 19 | 15 18 | ifex | ⊢ if ( 𝑁  =  0 ,  1 ,  if ( 0  <  𝑁 ,  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑁 ) ,  ( 1  /  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - 𝑁 ) ) ) )  ∈  V | 
						
							| 20 | 13 14 19 | ovmpoa | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℤ )  →  ( 𝐴 ↑ 𝑁 )  =  if ( 𝑁  =  0 ,  1 ,  if ( 0  <  𝑁 ,  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑁 ) ,  ( 1  /  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ - 𝑁 ) ) ) ) ) |