| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f0dom0 |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( 𝑋 = ∅ ↔ 𝐹 = ∅ ) ) |
| 2 |
1
|
necon3bid |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( 𝑋 ≠ ∅ ↔ 𝐹 ≠ ∅ ) ) |
| 3 |
2
|
biimpa |
⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑋 ≠ ∅ ) → 𝐹 ≠ ∅ ) |
| 4 |
|
feq3 |
⊢ ( 𝑌 = ∅ → ( 𝐹 : 𝑋 ⟶ 𝑌 ↔ 𝐹 : 𝑋 ⟶ ∅ ) ) |
| 5 |
|
f00 |
⊢ ( 𝐹 : 𝑋 ⟶ ∅ ↔ ( 𝐹 = ∅ ∧ 𝑋 = ∅ ) ) |
| 6 |
5
|
simprbi |
⊢ ( 𝐹 : 𝑋 ⟶ ∅ → 𝑋 = ∅ ) |
| 7 |
4 6
|
biimtrdi |
⊢ ( 𝑌 = ∅ → ( 𝐹 : 𝑋 ⟶ 𝑌 → 𝑋 = ∅ ) ) |
| 8 |
|
nne |
⊢ ( ¬ 𝑋 ≠ ∅ ↔ 𝑋 = ∅ ) |
| 9 |
7 8
|
imbitrrdi |
⊢ ( 𝑌 = ∅ → ( 𝐹 : 𝑋 ⟶ 𝑌 → ¬ 𝑋 ≠ ∅ ) ) |
| 10 |
|
imnan |
⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑌 → ¬ 𝑋 ≠ ∅ ) ↔ ¬ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑋 ≠ ∅ ) ) |
| 11 |
9 10
|
sylib |
⊢ ( 𝑌 = ∅ → ¬ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑋 ≠ ∅ ) ) |
| 12 |
11
|
necon2ai |
⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑋 ≠ ∅ ) → 𝑌 ≠ ∅ ) |
| 13 |
3 12
|
jca |
⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑋 ≠ ∅ ) → ( 𝐹 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) |