Metamath Proof Explorer


Theorem fib5

Description: Value of the Fibonacci sequence at index 5. (Contributed by Thierry Arnoux, 25-Apr-2019)

Ref Expression
Assertion fib5 ( Fibci ‘ 5 ) = 5

Proof

Step Hyp Ref Expression
1 4p1e5 ( 4 + 1 ) = 5
2 1 fveq2i ( Fibci ‘ ( 4 + 1 ) ) = ( Fibci ‘ 5 )
3 4nn 4 ∈ ℕ
4 fibp1 ( 4 ∈ ℕ → ( Fibci ‘ ( 4 + 1 ) ) = ( ( Fibci ‘ ( 4 − 1 ) ) + ( Fibci ‘ 4 ) ) )
5 3 4 ax-mp ( Fibci ‘ ( 4 + 1 ) ) = ( ( Fibci ‘ ( 4 − 1 ) ) + ( Fibci ‘ 4 ) )
6 4cn 4 ∈ ℂ
7 ax-1cn 1 ∈ ℂ
8 3cn 3 ∈ ℂ
9 3p1e4 ( 3 + 1 ) = 4
10 8 7 9 addcomli ( 1 + 3 ) = 4
11 6 7 8 10 subaddrii ( 4 − 1 ) = 3
12 11 fveq2i ( Fibci ‘ ( 4 − 1 ) ) = ( Fibci ‘ 3 )
13 fib3 ( Fibci ‘ 3 ) = 2
14 12 13 eqtri ( Fibci ‘ ( 4 − 1 ) ) = 2
15 fib4 ( Fibci ‘ 4 ) = 3
16 14 15 oveq12i ( ( Fibci ‘ ( 4 − 1 ) ) + ( Fibci ‘ 4 ) ) = ( 2 + 3 )
17 2cn 2 ∈ ℂ
18 3p2e5 ( 3 + 2 ) = 5
19 8 17 18 addcomli ( 2 + 3 ) = 5
20 5 16 19 3eqtri ( Fibci ‘ ( 4 + 1 ) ) = 5
21 2 20 eqtr3i ( Fibci ‘ 5 ) = 5