| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 4p1e5 | ⊢ ( 4  +  1 )  =  5 | 
						
							| 2 | 1 | fveq2i | ⊢ ( Fibci ‘ ( 4  +  1 ) )  =  ( Fibci ‘ 5 ) | 
						
							| 3 |  | 4nn | ⊢ 4  ∈  ℕ | 
						
							| 4 |  | fibp1 | ⊢ ( 4  ∈  ℕ  →  ( Fibci ‘ ( 4  +  1 ) )  =  ( ( Fibci ‘ ( 4  −  1 ) )  +  ( Fibci ‘ 4 ) ) ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ( Fibci ‘ ( 4  +  1 ) )  =  ( ( Fibci ‘ ( 4  −  1 ) )  +  ( Fibci ‘ 4 ) ) | 
						
							| 6 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 7 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 8 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 9 |  | 3p1e4 | ⊢ ( 3  +  1 )  =  4 | 
						
							| 10 | 8 7 9 | addcomli | ⊢ ( 1  +  3 )  =  4 | 
						
							| 11 | 6 7 8 10 | subaddrii | ⊢ ( 4  −  1 )  =  3 | 
						
							| 12 | 11 | fveq2i | ⊢ ( Fibci ‘ ( 4  −  1 ) )  =  ( Fibci ‘ 3 ) | 
						
							| 13 |  | fib3 | ⊢ ( Fibci ‘ 3 )  =  2 | 
						
							| 14 | 12 13 | eqtri | ⊢ ( Fibci ‘ ( 4  −  1 ) )  =  2 | 
						
							| 15 |  | fib4 | ⊢ ( Fibci ‘ 4 )  =  3 | 
						
							| 16 | 14 15 | oveq12i | ⊢ ( ( Fibci ‘ ( 4  −  1 ) )  +  ( Fibci ‘ 4 ) )  =  ( 2  +  3 ) | 
						
							| 17 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 18 |  | 3p2e5 | ⊢ ( 3  +  2 )  =  5 | 
						
							| 19 | 8 17 18 | addcomli | ⊢ ( 2  +  3 )  =  5 | 
						
							| 20 | 5 16 19 | 3eqtri | ⊢ ( Fibci ‘ ( 4  +  1 ) )  =  5 | 
						
							| 21 | 2 20 | eqtr3i | ⊢ ( Fibci ‘ 5 )  =  5 |