| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 4p1e5 |  |-  ( 4 + 1 ) = 5 | 
						
							| 2 | 1 | fveq2i |  |-  ( Fibci ` ( 4 + 1 ) ) = ( Fibci ` 5 ) | 
						
							| 3 |  | 4nn |  |-  4 e. NN | 
						
							| 4 |  | fibp1 |  |-  ( 4 e. NN -> ( Fibci ` ( 4 + 1 ) ) = ( ( Fibci ` ( 4 - 1 ) ) + ( Fibci ` 4 ) ) ) | 
						
							| 5 | 3 4 | ax-mp |  |-  ( Fibci ` ( 4 + 1 ) ) = ( ( Fibci ` ( 4 - 1 ) ) + ( Fibci ` 4 ) ) | 
						
							| 6 |  | 4cn |  |-  4 e. CC | 
						
							| 7 |  | ax-1cn |  |-  1 e. CC | 
						
							| 8 |  | 3cn |  |-  3 e. CC | 
						
							| 9 |  | 3p1e4 |  |-  ( 3 + 1 ) = 4 | 
						
							| 10 | 8 7 9 | addcomli |  |-  ( 1 + 3 ) = 4 | 
						
							| 11 | 6 7 8 10 | subaddrii |  |-  ( 4 - 1 ) = 3 | 
						
							| 12 | 11 | fveq2i |  |-  ( Fibci ` ( 4 - 1 ) ) = ( Fibci ` 3 ) | 
						
							| 13 |  | fib3 |  |-  ( Fibci ` 3 ) = 2 | 
						
							| 14 | 12 13 | eqtri |  |-  ( Fibci ` ( 4 - 1 ) ) = 2 | 
						
							| 15 |  | fib4 |  |-  ( Fibci ` 4 ) = 3 | 
						
							| 16 | 14 15 | oveq12i |  |-  ( ( Fibci ` ( 4 - 1 ) ) + ( Fibci ` 4 ) ) = ( 2 + 3 ) | 
						
							| 17 |  | 2cn |  |-  2 e. CC | 
						
							| 18 |  | 3p2e5 |  |-  ( 3 + 2 ) = 5 | 
						
							| 19 | 8 17 18 | addcomli |  |-  ( 2 + 3 ) = 5 | 
						
							| 20 | 5 16 19 | 3eqtri |  |-  ( Fibci ` ( 4 + 1 ) ) = 5 | 
						
							| 21 | 2 20 | eqtr3i |  |-  ( Fibci ` 5 ) = 5 |