| Step |
Hyp |
Ref |
Expression |
| 1 |
|
5p1e6 |
|- ( 5 + 1 ) = 6 |
| 2 |
1
|
fveq2i |
|- ( Fibci ` ( 5 + 1 ) ) = ( Fibci ` 6 ) |
| 3 |
|
5nn |
|- 5 e. NN |
| 4 |
|
fibp1 |
|- ( 5 e. NN -> ( Fibci ` ( 5 + 1 ) ) = ( ( Fibci ` ( 5 - 1 ) ) + ( Fibci ` 5 ) ) ) |
| 5 |
3 4
|
ax-mp |
|- ( Fibci ` ( 5 + 1 ) ) = ( ( Fibci ` ( 5 - 1 ) ) + ( Fibci ` 5 ) ) |
| 6 |
|
5cn |
|- 5 e. CC |
| 7 |
|
ax-1cn |
|- 1 e. CC |
| 8 |
|
4cn |
|- 4 e. CC |
| 9 |
|
4p1e5 |
|- ( 4 + 1 ) = 5 |
| 10 |
8 7 9
|
addcomli |
|- ( 1 + 4 ) = 5 |
| 11 |
6 7 8 10
|
subaddrii |
|- ( 5 - 1 ) = 4 |
| 12 |
11
|
fveq2i |
|- ( Fibci ` ( 5 - 1 ) ) = ( Fibci ` 4 ) |
| 13 |
|
fib4 |
|- ( Fibci ` 4 ) = 3 |
| 14 |
12 13
|
eqtri |
|- ( Fibci ` ( 5 - 1 ) ) = 3 |
| 15 |
|
fib5 |
|- ( Fibci ` 5 ) = 5 |
| 16 |
14 15
|
oveq12i |
|- ( ( Fibci ` ( 5 - 1 ) ) + ( Fibci ` 5 ) ) = ( 3 + 5 ) |
| 17 |
|
3cn |
|- 3 e. CC |
| 18 |
|
5p3e8 |
|- ( 5 + 3 ) = 8 |
| 19 |
6 17 18
|
addcomli |
|- ( 3 + 5 ) = 8 |
| 20 |
5 16 19
|
3eqtri |
|- ( Fibci ` ( 5 + 1 ) ) = 8 |
| 21 |
2 20
|
eqtr3i |
|- ( Fibci ` 6 ) = 8 |