Metamath Proof Explorer


Theorem fib5

Description: Value of the Fibonacci sequence at index 5. (Contributed by Thierry Arnoux, 25-Apr-2019)

Ref Expression
Assertion fib5 Fibci 5 = 5

Proof

Step Hyp Ref Expression
1 4p1e5 4 + 1 = 5
2 1 fveq2i Fibci 4 + 1 = Fibci 5
3 4nn 4
4 fibp1 4 Fibci 4 + 1 = Fibci 4 1 + Fibci 4
5 3 4 ax-mp Fibci 4 + 1 = Fibci 4 1 + Fibci 4
6 4cn 4
7 ax-1cn 1
8 3cn 3
9 3p1e4 3 + 1 = 4
10 8 7 9 addcomli 1 + 3 = 4
11 6 7 8 10 subaddrii 4 1 = 3
12 11 fveq2i Fibci 4 1 = Fibci 3
13 fib3 Fibci 3 = 2
14 12 13 eqtri Fibci 4 1 = 2
15 fib4 Fibci 4 = 3
16 14 15 oveq12i Fibci 4 1 + Fibci 4 = 2 + 3
17 2cn 2
18 3p2e5 3 + 2 = 5
19 8 17 18 addcomli 2 + 3 = 5
20 5 16 19 3eqtri Fibci 4 + 1 = 5
21 2 20 eqtr3i Fibci 5 = 5