| Step | Hyp | Ref | Expression | 
						
							| 1 |  | finsumvtxdg2sstep.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | finsumvtxdg2sstep.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | finsumvtxdg2sstep.k | ⊢ 𝐾  =  ( 𝑉  ∖  { 𝑁 } ) | 
						
							| 4 |  | finsumvtxdg2sstep.i | ⊢ 𝐼  =  { 𝑖  ∈  dom  𝐸  ∣  𝑁  ∉  ( 𝐸 ‘ 𝑖 ) } | 
						
							| 5 |  | finsumvtxdg2sstep.p | ⊢ 𝑃  =  ( 𝐸  ↾  𝐼 ) | 
						
							| 6 |  | finsumvtxdg2sstep.s | ⊢ 𝑆  =  〈 𝐾 ,  𝑃 〉 | 
						
							| 7 |  | finsumvtxdg2ssteplem.j | ⊢ 𝐽  =  { 𝑖  ∈  dom  𝐸  ∣  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) } | 
						
							| 8 | 7 | reqabi | ⊢ ( 𝑖  ∈  𝐽  ↔  ( 𝑖  ∈  dom  𝐸  ∧  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 9 | 8 | anbi1i | ⊢ ( ( 𝑖  ∈  𝐽  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ↔  ( ( 𝑖  ∈  dom  𝐸  ∧  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 10 |  | anass | ⊢ ( ( ( 𝑖  ∈  dom  𝐸  ∧  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ↔  ( 𝑖  ∈  dom  𝐸  ∧  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 11 | 9 10 | bitri | ⊢ ( ( 𝑖  ∈  𝐽  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) )  ↔  ( 𝑖  ∈  dom  𝐸  ∧  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 12 | 11 | rabbia2 | ⊢ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) }  =  { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } | 
						
							| 13 | 12 | fveq2i | ⊢ ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } )  =  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } ) | 
						
							| 14 | 13 | a1i | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  ∧  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) )  →  ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } )  =  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } ) ) | 
						
							| 15 | 14 | sumeq2dv | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } )  =  Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } ) ) | 
						
							| 16 | 15 | oveq1d | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  ( Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) )  =  ( Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) ) ) | 
						
							| 17 |  | simpll | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  𝐺  ∈  UPGraph ) | 
						
							| 18 |  | simpr | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) ) | 
						
							| 19 |  | simplr | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  𝑁  ∈  𝑉 ) | 
						
							| 20 | 1 2 | numedglnl | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑁  ∈  𝑉 )  →  ( Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) )  =  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) } ) ) | 
						
							| 21 | 17 18 19 20 | syl3anc | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  ( Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝑁  ∈  ( 𝐸 ‘ 𝑖 )  ∧  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) ) } )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) )  =  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) } ) ) | 
						
							| 22 | 16 21 | eqtrd | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  ( Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) )  =  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) } ) ) | 
						
							| 23 | 7 | fveq2i | ⊢ ( ♯ ‘ 𝐽 )  =  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) } ) | 
						
							| 24 | 22 23 | eqtr4di | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  ( Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) )  =  ( ♯ ‘ 𝐽 ) ) |