| Step | Hyp | Ref | Expression | 
						
							| 1 |  | finsumvtxdg2sstep.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | finsumvtxdg2sstep.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | finsumvtxdg2sstep.k | ⊢ 𝐾  =  ( 𝑉  ∖  { 𝑁 } ) | 
						
							| 4 |  | finsumvtxdg2sstep.i | ⊢ 𝐼  =  { 𝑖  ∈  dom  𝐸  ∣  𝑁  ∉  ( 𝐸 ‘ 𝑖 ) } | 
						
							| 5 |  | finsumvtxdg2sstep.p | ⊢ 𝑃  =  ( 𝐸  ↾  𝐼 ) | 
						
							| 6 |  | finsumvtxdg2sstep.s | ⊢ 𝑆  =  〈 𝐾 ,  𝑃 〉 | 
						
							| 7 |  | finsumvtxdg2ssteplem.j | ⊢ 𝐽  =  { 𝑖  ∈  dom  𝐸  ∣  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) } | 
						
							| 8 | 1 2 3 4 5 6 7 | vtxdginducedm1fi | ⊢ ( 𝐸  ∈  Fin  →  ∀ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 )  +  ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } ) ) ) | 
						
							| 9 | 8 | ad2antll | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  ∀ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 )  +  ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } ) ) ) | 
						
							| 10 | 9 | sumeq2d | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 )  +  ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } ) ) ) | 
						
							| 11 |  | diffi | ⊢ ( 𝑉  ∈  Fin  →  ( 𝑉  ∖  { 𝑁 } )  ∈  Fin ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  →  ( 𝑉  ∖  { 𝑁 } )  ∈  Fin ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  ( 𝑉  ∖  { 𝑁 } )  ∈  Fin ) | 
						
							| 14 | 5 | dmeqi | ⊢ dom  𝑃  =  dom  ( 𝐸  ↾  𝐼 ) | 
						
							| 15 |  | finresfin | ⊢ ( 𝐸  ∈  Fin  →  ( 𝐸  ↾  𝐼 )  ∈  Fin ) | 
						
							| 16 |  | dmfi | ⊢ ( ( 𝐸  ↾  𝐼 )  ∈  Fin  →  dom  ( 𝐸  ↾  𝐼 )  ∈  Fin ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝐸  ∈  Fin  →  dom  ( 𝐸  ↾  𝐼 )  ∈  Fin ) | 
						
							| 18 | 14 17 | eqeltrid | ⊢ ( 𝐸  ∈  Fin  →  dom  𝑃  ∈  Fin ) | 
						
							| 19 | 18 | ad2antll | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  dom  𝑃  ∈  Fin ) | 
						
							| 20 | 3 | eqcomi | ⊢ ( 𝑉  ∖  { 𝑁 } )  =  𝐾 | 
						
							| 21 | 20 | eleq2i | ⊢ ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  ↔  𝑣  ∈  𝐾 ) | 
						
							| 22 | 21 | biimpi | ⊢ ( 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } )  →  𝑣  ∈  𝐾 ) | 
						
							| 23 | 6 | fveq2i | ⊢ ( Vtx ‘ 𝑆 )  =  ( Vtx ‘ 〈 𝐾 ,  𝑃 〉 ) | 
						
							| 24 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 25 | 24 | difexi | ⊢ ( 𝑉  ∖  { 𝑁 } )  ∈  V | 
						
							| 26 | 3 25 | eqeltri | ⊢ 𝐾  ∈  V | 
						
							| 27 | 2 | fvexi | ⊢ 𝐸  ∈  V | 
						
							| 28 | 27 | resex | ⊢ ( 𝐸  ↾  𝐼 )  ∈  V | 
						
							| 29 | 5 28 | eqeltri | ⊢ 𝑃  ∈  V | 
						
							| 30 | 26 29 | opvtxfvi | ⊢ ( Vtx ‘ 〈 𝐾 ,  𝑃 〉 )  =  𝐾 | 
						
							| 31 | 23 30 | eqtr2i | ⊢ 𝐾  =  ( Vtx ‘ 𝑆 ) | 
						
							| 32 | 1 2 3 4 5 6 | vtxdginducedm1lem1 | ⊢ ( iEdg ‘ 𝑆 )  =  𝑃 | 
						
							| 33 | 32 | eqcomi | ⊢ 𝑃  =  ( iEdg ‘ 𝑆 ) | 
						
							| 34 |  | eqid | ⊢ dom  𝑃  =  dom  𝑃 | 
						
							| 35 | 31 33 34 | vtxdgfisnn0 | ⊢ ( ( dom  𝑃  ∈  Fin  ∧  𝑣  ∈  𝐾 )  →  ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 )  ∈  ℕ0 ) | 
						
							| 36 | 35 | nn0cnd | ⊢ ( ( dom  𝑃  ∈  Fin  ∧  𝑣  ∈  𝐾 )  →  ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 )  ∈  ℂ ) | 
						
							| 37 | 19 22 36 | syl2an | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  ∧  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) )  →  ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 )  ∈  ℂ ) | 
						
							| 38 |  | dmfi | ⊢ ( 𝐸  ∈  Fin  →  dom  𝐸  ∈  Fin ) | 
						
							| 39 |  | rabfi | ⊢ ( dom  𝐸  ∈  Fin  →  { 𝑖  ∈  dom  𝐸  ∣  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) }  ∈  Fin ) | 
						
							| 40 | 38 39 | syl | ⊢ ( 𝐸  ∈  Fin  →  { 𝑖  ∈  dom  𝐸  ∣  𝑁  ∈  ( 𝐸 ‘ 𝑖 ) }  ∈  Fin ) | 
						
							| 41 | 7 40 | eqeltrid | ⊢ ( 𝐸  ∈  Fin  →  𝐽  ∈  Fin ) | 
						
							| 42 |  | rabfi | ⊢ ( 𝐽  ∈  Fin  →  { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) }  ∈  Fin ) | 
						
							| 43 |  | hashcl | ⊢ ( { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) }  ∈  Fin  →  ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } )  ∈  ℕ0 ) | 
						
							| 44 | 41 42 43 | 3syl | ⊢ ( 𝐸  ∈  Fin  →  ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } )  ∈  ℕ0 ) | 
						
							| 45 | 44 | nn0cnd | ⊢ ( 𝐸  ∈  Fin  →  ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } )  ∈  ℂ ) | 
						
							| 46 | 45 | ad2antll | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } )  ∈  ℂ ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  ∧  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) )  →  ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } )  ∈  ℂ ) | 
						
							| 48 | 13 37 47 | fsumadd | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 )  +  ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } ) )  =  ( Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 )  +  Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } ) ) ) | 
						
							| 49 | 10 48 | eqtrd | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  ( Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 )  +  Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } ) ) ) | 
						
							| 50 | 3 | sumeq1i | ⊢ Σ 𝑣  ∈  𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 )  =  Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) | 
						
							| 51 | 50 | eqeq1i | ⊢ ( Σ 𝑣  ∈  𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 )  =  ( 2  ·  ( ♯ ‘ 𝑃 ) )  ↔  Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 )  =  ( 2  ·  ( ♯ ‘ 𝑃 ) ) ) | 
						
							| 52 |  | oveq1 | ⊢ ( Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 )  =  ( 2  ·  ( ♯ ‘ 𝑃 ) )  →  ( Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 )  +  Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } ) )  =  ( ( 2  ·  ( ♯ ‘ 𝑃 ) )  +  Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } ) ) ) | 
						
							| 53 | 51 52 | sylbi | ⊢ ( Σ 𝑣  ∈  𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 )  =  ( 2  ·  ( ♯ ‘ 𝑃 ) )  →  ( Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 )  +  Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } ) )  =  ( ( 2  ·  ( ♯ ‘ 𝑃 ) )  +  Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } ) ) ) | 
						
							| 54 | 49 53 | sylan9eq | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  ∧  Σ 𝑣  ∈  𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 )  =  ( 2  ·  ( ♯ ‘ 𝑃 ) ) )  →  Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  ( ( 2  ·  ( ♯ ‘ 𝑃 ) )  +  Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } ) ) ) | 
						
							| 55 | 54 | oveq1d | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  ∧  Σ 𝑣  ∈  𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 )  =  ( 2  ·  ( ♯ ‘ 𝑃 ) ) )  →  ( Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  +  ( ( ♯ ‘ 𝐽 )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) ) )  =  ( ( ( 2  ·  ( ♯ ‘ 𝑃 ) )  +  Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } ) )  +  ( ( ♯ ‘ 𝐽 )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) ) ) ) | 
						
							| 56 | 45 | adantl | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  →  ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } )  ∈  ℂ ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  ∧  𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) )  →  ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } )  ∈  ℂ ) | 
						
							| 58 | 12 57 | fsumcl | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  →  Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } )  ∈  ℂ ) | 
						
							| 59 |  | hashcl | ⊢ ( 𝐽  ∈  Fin  →  ( ♯ ‘ 𝐽 )  ∈  ℕ0 ) | 
						
							| 60 | 41 59 | syl | ⊢ ( 𝐸  ∈  Fin  →  ( ♯ ‘ 𝐽 )  ∈  ℕ0 ) | 
						
							| 61 | 60 | nn0cnd | ⊢ ( 𝐸  ∈  Fin  →  ( ♯ ‘ 𝐽 )  ∈  ℂ ) | 
						
							| 62 | 61 | adantl | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  →  ( ♯ ‘ 𝐽 )  ∈  ℂ ) | 
						
							| 63 |  | rabfi | ⊢ ( dom  𝐸  ∈  Fin  →  { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } }  ∈  Fin ) | 
						
							| 64 |  | hashcl | ⊢ ( { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } }  ∈  Fin  →  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } )  ∈  ℕ0 ) | 
						
							| 65 | 38 63 64 | 3syl | ⊢ ( 𝐸  ∈  Fin  →  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } )  ∈  ℕ0 ) | 
						
							| 66 | 65 | nn0cnd | ⊢ ( 𝐸  ∈  Fin  →  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } )  ∈  ℂ ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  →  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } )  ∈  ℂ ) | 
						
							| 68 | 58 62 67 | add12d | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin )  →  ( Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } )  +  ( ( ♯ ‘ 𝐽 )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) ) )  =  ( ( ♯ ‘ 𝐽 )  +  ( Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) ) ) ) | 
						
							| 69 | 68 | adantl | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  ( Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } )  +  ( ( ♯ ‘ 𝐽 )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) ) )  =  ( ( ♯ ‘ 𝐽 )  +  ( Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) ) ) ) | 
						
							| 70 | 1 2 3 4 5 6 7 | finsumvtxdg2ssteplem3 | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  ( Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) )  =  ( ♯ ‘ 𝐽 ) ) | 
						
							| 71 | 70 | oveq2d | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  ( ( ♯ ‘ 𝐽 )  +  ( Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) ) )  =  ( ( ♯ ‘ 𝐽 )  +  ( ♯ ‘ 𝐽 ) ) ) | 
						
							| 72 | 61 | 2timesd | ⊢ ( 𝐸  ∈  Fin  →  ( 2  ·  ( ♯ ‘ 𝐽 ) )  =  ( ( ♯ ‘ 𝐽 )  +  ( ♯ ‘ 𝐽 ) ) ) | 
						
							| 73 | 72 | eqcomd | ⊢ ( 𝐸  ∈  Fin  →  ( ( ♯ ‘ 𝐽 )  +  ( ♯ ‘ 𝐽 ) )  =  ( 2  ·  ( ♯ ‘ 𝐽 ) ) ) | 
						
							| 74 | 73 | ad2antll | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  ( ( ♯ ‘ 𝐽 )  +  ( ♯ ‘ 𝐽 ) )  =  ( 2  ·  ( ♯ ‘ 𝐽 ) ) ) | 
						
							| 75 | 69 71 74 | 3eqtrd | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  ( Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } )  +  ( ( ♯ ‘ 𝐽 )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) ) )  =  ( 2  ·  ( ♯ ‘ 𝐽 ) ) ) | 
						
							| 76 | 75 | oveq2d | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  ( ( 2  ·  ( ♯ ‘ 𝑃 ) )  +  ( Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } )  +  ( ( ♯ ‘ 𝐽 )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) ) ) )  =  ( ( 2  ·  ( ♯ ‘ 𝑃 ) )  +  ( 2  ·  ( ♯ ‘ 𝐽 ) ) ) ) | 
						
							| 77 |  | 2cnd | ⊢ ( 𝐸  ∈  Fin  →  2  ∈  ℂ ) | 
						
							| 78 | 5 15 | eqeltrid | ⊢ ( 𝐸  ∈  Fin  →  𝑃  ∈  Fin ) | 
						
							| 79 |  | hashcl | ⊢ ( 𝑃  ∈  Fin  →  ( ♯ ‘ 𝑃 )  ∈  ℕ0 ) | 
						
							| 80 | 78 79 | syl | ⊢ ( 𝐸  ∈  Fin  →  ( ♯ ‘ 𝑃 )  ∈  ℕ0 ) | 
						
							| 81 | 80 | nn0cnd | ⊢ ( 𝐸  ∈  Fin  →  ( ♯ ‘ 𝑃 )  ∈  ℂ ) | 
						
							| 82 | 77 81 | mulcld | ⊢ ( 𝐸  ∈  Fin  →  ( 2  ·  ( ♯ ‘ 𝑃 ) )  ∈  ℂ ) | 
						
							| 83 | 82 | ad2antll | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  ( 2  ·  ( ♯ ‘ 𝑃 ) )  ∈  ℂ ) | 
						
							| 84 | 58 | adantl | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } )  ∈  ℂ ) | 
						
							| 85 | 61 66 | addcld | ⊢ ( 𝐸  ∈  Fin  →  ( ( ♯ ‘ 𝐽 )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) )  ∈  ℂ ) | 
						
							| 86 | 85 | ad2antll | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  ( ( ♯ ‘ 𝐽 )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) )  ∈  ℂ ) | 
						
							| 87 | 83 84 86 | addassd | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  ( ( ( 2  ·  ( ♯ ‘ 𝑃 ) )  +  Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } ) )  +  ( ( ♯ ‘ 𝐽 )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) ) )  =  ( ( 2  ·  ( ♯ ‘ 𝑃 ) )  +  ( Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } )  +  ( ( ♯ ‘ 𝐽 )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) ) ) ) ) | 
						
							| 88 |  | 2cnd | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  2  ∈  ℂ ) | 
						
							| 89 | 81 | ad2antll | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  ( ♯ ‘ 𝑃 )  ∈  ℂ ) | 
						
							| 90 | 61 | ad2antll | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  ( ♯ ‘ 𝐽 )  ∈  ℂ ) | 
						
							| 91 | 88 89 90 | adddid | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  ( 2  ·  ( ( ♯ ‘ 𝑃 )  +  ( ♯ ‘ 𝐽 ) ) )  =  ( ( 2  ·  ( ♯ ‘ 𝑃 ) )  +  ( 2  ·  ( ♯ ‘ 𝐽 ) ) ) ) | 
						
							| 92 | 76 87 91 | 3eqtr4d | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  →  ( ( ( 2  ·  ( ♯ ‘ 𝑃 ) )  +  Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } ) )  +  ( ( ♯ ‘ 𝐽 )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) ) )  =  ( 2  ·  ( ( ♯ ‘ 𝑃 )  +  ( ♯ ‘ 𝐽 ) ) ) ) | 
						
							| 93 | 92 | adantr | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  ∧  Σ 𝑣  ∈  𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 )  =  ( 2  ·  ( ♯ ‘ 𝑃 ) ) )  →  ( ( ( 2  ·  ( ♯ ‘ 𝑃 ) )  +  Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ♯ ‘ { 𝑖  ∈  𝐽  ∣  𝑣  ∈  ( 𝐸 ‘ 𝑖 ) } ) )  +  ( ( ♯ ‘ 𝐽 )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) ) )  =  ( 2  ·  ( ( ♯ ‘ 𝑃 )  +  ( ♯ ‘ 𝐽 ) ) ) ) | 
						
							| 94 | 55 93 | eqtrd | ⊢ ( ( ( ( 𝐺  ∈  UPGraph  ∧  𝑁  ∈  𝑉 )  ∧  ( 𝑉  ∈  Fin  ∧  𝐸  ∈  Fin ) )  ∧  Σ 𝑣  ∈  𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 )  =  ( 2  ·  ( ♯ ‘ 𝑃 ) ) )  →  ( Σ 𝑣  ∈  ( 𝑉  ∖  { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  +  ( ( ♯ ‘ 𝐽 )  +  ( ♯ ‘ { 𝑖  ∈  dom  𝐸  ∣  ( 𝐸 ‘ 𝑖 )  =  { 𝑁 } } ) ) )  =  ( 2  ·  ( ( ♯ ‘ 𝑃 )  +  ( ♯ ‘ 𝐽 ) ) ) ) |