| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-fi |
⊢ fi = ( 𝑧 ∈ V ↦ { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝑧 ∩ Fin ) 𝑦 = ∩ 𝑥 } ) |
| 2 |
|
pweq |
⊢ ( 𝑧 = 𝐴 → 𝒫 𝑧 = 𝒫 𝐴 ) |
| 3 |
2
|
ineq1d |
⊢ ( 𝑧 = 𝐴 → ( 𝒫 𝑧 ∩ Fin ) = ( 𝒫 𝐴 ∩ Fin ) ) |
| 4 |
3
|
rexeqdv |
⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑥 ∈ ( 𝒫 𝑧 ∩ Fin ) 𝑦 = ∩ 𝑥 ↔ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = ∩ 𝑥 ) ) |
| 5 |
4
|
abbidv |
⊢ ( 𝑧 = 𝐴 → { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝑧 ∩ Fin ) 𝑦 = ∩ 𝑥 } = { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = ∩ 𝑥 } ) |
| 6 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
| 7 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑦 = ∩ 𝑥 ) → 𝑦 = ∩ 𝑥 ) |
| 8 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥 ∈ 𝒫 𝐴 ) |
| 9 |
8
|
elpwid |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥 ⊆ 𝐴 ) |
| 10 |
|
eqvisset |
⊢ ( 𝑦 = ∩ 𝑥 → ∩ 𝑥 ∈ V ) |
| 11 |
|
intex |
⊢ ( 𝑥 ≠ ∅ ↔ ∩ 𝑥 ∈ V ) |
| 12 |
10 11
|
sylibr |
⊢ ( 𝑦 = ∩ 𝑥 → 𝑥 ≠ ∅ ) |
| 13 |
|
intssuni2 |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ⊆ ∪ 𝐴 ) |
| 14 |
9 12 13
|
syl2an |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑦 = ∩ 𝑥 ) → ∩ 𝑥 ⊆ ∪ 𝐴 ) |
| 15 |
7 14
|
eqsstrd |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑦 = ∩ 𝑥 ) → 𝑦 ⊆ ∪ 𝐴 ) |
| 16 |
|
velpw |
⊢ ( 𝑦 ∈ 𝒫 ∪ 𝐴 ↔ 𝑦 ⊆ ∪ 𝐴 ) |
| 17 |
15 16
|
sylibr |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑦 = ∩ 𝑥 ) → 𝑦 ∈ 𝒫 ∪ 𝐴 ) |
| 18 |
17
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = ∩ 𝑥 → 𝑦 ∈ 𝒫 ∪ 𝐴 ) |
| 19 |
18
|
abssi |
⊢ { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = ∩ 𝑥 } ⊆ 𝒫 ∪ 𝐴 |
| 20 |
|
uniexg |
⊢ ( 𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V ) |
| 21 |
20
|
pwexd |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ V ) |
| 22 |
|
ssexg |
⊢ ( ( { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = ∩ 𝑥 } ⊆ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ∈ V ) → { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = ∩ 𝑥 } ∈ V ) |
| 23 |
19 21 22
|
sylancr |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = ∩ 𝑥 } ∈ V ) |
| 24 |
1 5 6 23
|
fvmptd3 |
⊢ ( 𝐴 ∈ 𝑉 → ( fi ‘ 𝐴 ) = { 𝑦 ∣ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = ∩ 𝑥 } ) |