| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem106.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 2 |
|
fourierdlem106.t |
⊢ 𝑇 = ( 2 · π ) |
| 3 |
|
fourierdlem106.per |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 4 |
|
fourierdlem106.g |
⊢ 𝐺 = ( ( ℝ D 𝐹 ) ↾ ( - π (,) π ) ) |
| 5 |
|
fourierdlem106.dmdv |
⊢ ( 𝜑 → ( ( - π (,) π ) ∖ dom 𝐺 ) ∈ Fin ) |
| 6 |
|
fourierdlem106.dvcn |
⊢ ( 𝜑 → 𝐺 ∈ ( dom 𝐺 –cn→ ℂ ) ) |
| 7 |
|
fourierdlem106.rlim |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( - π [,) π ) ∖ dom 𝐺 ) ) → ( ( 𝐺 ↾ ( 𝑥 (,) +∞ ) ) limℂ 𝑥 ) ≠ ∅ ) |
| 8 |
|
fourierdlem106.llim |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( - π (,] π ) ∖ dom 𝐺 ) ) → ( ( 𝐺 ↾ ( -∞ (,) 𝑥 ) ) limℂ 𝑥 ) ≠ ∅ ) |
| 9 |
|
fourierdlem106.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 10 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ { 𝑤 ∈ ( ℝ ↑m ( 0 ... 𝑘 ) ) ∣ ( ( ( 𝑤 ‘ 0 ) = - π ∧ ( 𝑤 ‘ 𝑘 ) = π ) ∧ ∀ 𝑧 ∈ ( 0 ..^ 𝑘 ) ( 𝑤 ‘ 𝑧 ) < ( 𝑤 ‘ ( 𝑧 + 1 ) ) ) } ) = ( 𝑘 ∈ ℕ ↦ { 𝑤 ∈ ( ℝ ↑m ( 0 ... 𝑘 ) ) ∣ ( ( ( 𝑤 ‘ 0 ) = - π ∧ ( 𝑤 ‘ 𝑘 ) = π ) ∧ ∀ 𝑧 ∈ ( 0 ..^ 𝑘 ) ( 𝑤 ‘ 𝑧 ) < ( 𝑤 ‘ ( 𝑧 + 1 ) ) ) } ) |
| 11 |
|
id |
⊢ ( 𝑦 = 𝑥 → 𝑦 = 𝑥 ) |
| 12 |
|
oveq2 |
⊢ ( 𝑦 = 𝑥 → ( π − 𝑦 ) = ( π − 𝑥 ) ) |
| 13 |
12
|
oveq1d |
⊢ ( 𝑦 = 𝑥 → ( ( π − 𝑦 ) / 𝑇 ) = ( ( π − 𝑥 ) / 𝑇 ) ) |
| 14 |
13
|
fveq2d |
⊢ ( 𝑦 = 𝑥 → ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) = ( ⌊ ‘ ( ( π − 𝑥 ) / 𝑇 ) ) ) |
| 15 |
14
|
oveq1d |
⊢ ( 𝑦 = 𝑥 → ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) = ( ( ⌊ ‘ ( ( π − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) |
| 16 |
11 15
|
oveq12d |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 + ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) = ( 𝑥 + ( ( ⌊ ‘ ( ( π − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 17 |
16
|
cbvmptv |
⊢ ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( π − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 18 |
|
eqid |
⊢ ( { - π , π , ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) = ( { - π , π , ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) |
| 19 |
|
eqid |
⊢ ( ( ♯ ‘ ( { - π , π , ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ) − 1 ) = ( ( ♯ ‘ ( { - π , π , ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ) − 1 ) |
| 20 |
|
isoeq1 |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { - π , π , ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ) − 1 ) ) , ( { - π , π , ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ) ↔ 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { - π , π , ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ) − 1 ) ) , ( { - π , π , ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ) ) ) |
| 21 |
20
|
cbviotavw |
⊢ ( ℩ 𝑔 𝑔 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { - π , π , ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ) − 1 ) ) , ( { - π , π , ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ) ) = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... ( ( ♯ ‘ ( { - π , π , ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ) − 1 ) ) , ( { - π , π , ( ( 𝑦 ∈ ℝ ↦ ( 𝑦 + ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ) ‘ 𝑋 ) } ∪ ( ( - π [,] π ) ∖ dom 𝐺 ) ) ) ) |
| 22 |
1 2 3 4 5 6 7 8 9 10 17 18 19 21
|
fourierdlem102 |
⊢ ( 𝜑 → ( ( ( 𝐹 ↾ ( -∞ (,) 𝑋 ) ) limℂ 𝑋 ) ≠ ∅ ∧ ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ≠ ∅ ) ) |