| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem107.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | fourierdlem107.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | fourierdlem107.t | ⊢ 𝑇  =  ( 𝐵  −  𝐴 ) | 
						
							| 4 |  | fourierdlem107.x | ⊢ ( 𝜑  →  𝑋  ∈  ℝ+ ) | 
						
							| 5 |  | fourierdlem107.p | ⊢ 𝑃  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 6 |  | fourierdlem107.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 7 |  | fourierdlem107.q | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 8 |  | fourierdlem107.f | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 9 |  | fourierdlem107.fper | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 10 |  | fourierdlem107.fcn | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 11 |  | fourierdlem107.r | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 12 |  | fourierdlem107.l | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 13 |  | fourierdlem107.o | ⊢ 𝑂  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐴 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 14 |  | fourierdlem107.h | ⊢ 𝐻  =  ( { ( 𝐴  −  𝑋 ) ,  𝐴 }  ∪  { 𝑦  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ∣  ∃ 𝑘  ∈  ℤ ( 𝑦  +  ( 𝑘  ·  𝑇 ) )  ∈  ran  𝑄 } ) | 
						
							| 15 |  | fourierdlem107.n | ⊢ 𝑁  =  ( ( ♯ ‘ 𝐻 )  −  1 ) | 
						
							| 16 |  | fourierdlem107.s | ⊢ 𝑆  =  ( ℩ 𝑓 𝑓  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  𝐻 ) ) | 
						
							| 17 |  | fourierdlem107.e | ⊢ 𝐸  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑥  +  ( ( ⌊ ‘ ( ( 𝐵  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 18 |  | fourierdlem107.z | ⊢ 𝑍  =  ( 𝑦  ∈  ( 𝐴 (,] 𝐵 )  ↦  if ( 𝑦  =  𝐵 ,  𝐴 ,  𝑦 ) ) | 
						
							| 19 |  | fourierdlem107.i | ⊢ 𝐼  =  ( 𝑥  ∈  ℝ  ↦  sup ( { 𝑖  ∈  ( 0 ..^ 𝑀 )  ∣  ( 𝑄 ‘ 𝑖 )  ≤  ( 𝑍 ‘ ( 𝐸 ‘ 𝑥 ) ) } ,  ℝ ,   <  ) ) | 
						
							| 20 | 3 | oveq2i | ⊢ ( ( 𝐴  −  𝑋 )  +  𝑇 )  =  ( ( 𝐴  −  𝑋 )  +  ( 𝐵  −  𝐴 ) ) | 
						
							| 21 | 1 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 22 | 4 | rpred | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 23 | 22 | recnd | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 24 | 2 | recnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 25 | 21 23 24 21 | subadd4b | ⊢ ( 𝜑  →  ( ( 𝐴  −  𝑋 )  +  ( 𝐵  −  𝐴 ) )  =  ( ( 𝐴  −  𝐴 )  +  ( 𝐵  −  𝑋 ) ) ) | 
						
							| 26 | 20 25 | eqtrid | ⊢ ( 𝜑  →  ( ( 𝐴  −  𝑋 )  +  𝑇 )  =  ( ( 𝐴  −  𝐴 )  +  ( 𝐵  −  𝑋 ) ) ) | 
						
							| 27 | 21 | subidd | ⊢ ( 𝜑  →  ( 𝐴  −  𝐴 )  =  0 ) | 
						
							| 28 | 27 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐴  −  𝐴 )  +  ( 𝐵  −  𝑋 ) )  =  ( 0  +  ( 𝐵  −  𝑋 ) ) ) | 
						
							| 29 | 2 22 | resubcld | ⊢ ( 𝜑  →  ( 𝐵  −  𝑋 )  ∈  ℝ ) | 
						
							| 30 | 29 | recnd | ⊢ ( 𝜑  →  ( 𝐵  −  𝑋 )  ∈  ℂ ) | 
						
							| 31 | 30 | addlidd | ⊢ ( 𝜑  →  ( 0  +  ( 𝐵  −  𝑋 ) )  =  ( 𝐵  −  𝑋 ) ) | 
						
							| 32 | 26 28 31 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝐴  −  𝑋 )  +  𝑇 )  =  ( 𝐵  −  𝑋 ) ) | 
						
							| 33 | 3 | oveq2i | ⊢ ( 𝐴  +  𝑇 )  =  ( 𝐴  +  ( 𝐵  −  𝐴 ) ) | 
						
							| 34 | 21 24 | pncan3d | ⊢ ( 𝜑  →  ( 𝐴  +  ( 𝐵  −  𝐴 ) )  =  𝐵 ) | 
						
							| 35 | 33 34 | eqtrid | ⊢ ( 𝜑  →  ( 𝐴  +  𝑇 )  =  𝐵 ) | 
						
							| 36 | 32 35 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 𝐴  −  𝑋 )  +  𝑇 ) [,] ( 𝐴  +  𝑇 ) )  =  ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ) | 
						
							| 37 | 36 | eqcomd | ⊢ ( 𝜑  →  ( ( 𝐵  −  𝑋 ) [,] 𝐵 )  =  ( ( ( 𝐴  −  𝑋 )  +  𝑇 ) [,] ( 𝐴  +  𝑇 ) ) ) | 
						
							| 38 | 37 | itgeq1d | ⊢ ( 𝜑  →  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( ( ( 𝐴  −  𝑋 )  +  𝑇 ) [,] ( 𝐴  +  𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 39 | 1 22 | resubcld | ⊢ ( 𝜑  →  ( 𝐴  −  𝑋 )  ∈  ℝ ) | 
						
							| 40 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑝 ‘ 𝑖 )  =  ( 𝑝 ‘ 𝑗 ) ) | 
						
							| 41 |  | oveq1 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑖  +  1 )  =  ( 𝑗  +  1 ) ) | 
						
							| 42 | 41 | fveq2d | ⊢ ( 𝑖  =  𝑗  →  ( 𝑝 ‘ ( 𝑖  +  1 ) )  =  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 43 | 40 42 | breq12d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) )  ↔  ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 44 | 43 | cbvralvw | ⊢ ( ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) )  ↔  ∀ 𝑗  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 45 | 44 | a1i | ⊢ ( 𝑚  ∈  ℕ  →  ( ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) )  ↔  ∀ 𝑗  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 46 | 45 | anbi2d | ⊢ ( 𝑚  ∈  ℕ  →  ( ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐴 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) )  ↔  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐴 )  ∧  ∀ 𝑗  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 47 | 46 | rabbidv | ⊢ ( 𝑚  ∈  ℕ  →  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐴 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) }  =  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐴 )  ∧  ∀ 𝑗  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) } ) | 
						
							| 48 | 47 | mpteq2ia | ⊢ ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐴 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } )  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐴 )  ∧  ∀ 𝑗  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) } ) | 
						
							| 49 | 13 48 | eqtri | ⊢ 𝑂  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  −  𝑋 )  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐴 )  ∧  ∀ 𝑗  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) } ) | 
						
							| 50 | 1 4 | ltsubrpd | ⊢ ( 𝜑  →  ( 𝐴  −  𝑋 )  <  𝐴 ) | 
						
							| 51 | 3 5 6 7 39 1 50 13 14 15 16 | fourierdlem54 | ⊢ ( 𝜑  →  ( ( 𝑁  ∈  ℕ  ∧  𝑆  ∈  ( 𝑂 ‘ 𝑁 ) )  ∧  𝑆  Isom   <  ,   <  ( ( 0 ... 𝑁 ) ,  𝐻 ) ) ) | 
						
							| 52 | 51 | simpld | ⊢ ( 𝜑  →  ( 𝑁  ∈  ℕ  ∧  𝑆  ∈  ( 𝑂 ‘ 𝑁 ) ) ) | 
						
							| 53 | 52 | simpld | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 54 | 2 1 | resubcld | ⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  ∈  ℝ ) | 
						
							| 55 | 3 54 | eqeltrid | ⊢ ( 𝜑  →  𝑇  ∈  ℝ ) | 
						
							| 56 | 52 | simprd | ⊢ ( 𝜑  →  𝑆  ∈  ( 𝑂 ‘ 𝑁 ) ) | 
						
							| 57 | 39 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) )  →  ( 𝐴  −  𝑋 )  ∈  ℝ ) | 
						
							| 58 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 59 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) )  →  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ) | 
						
							| 60 |  | eliccre | ⊢ ( ( ( 𝐴  −  𝑋 )  ∈  ℝ  ∧  𝐴  ∈  ℝ  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 61 | 57 58 59 60 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 62 | 61 9 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 63 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑆 ‘ 𝑖 )  =  ( 𝑆 ‘ 𝑗 ) ) | 
						
							| 64 | 63 | oveq1d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝑆 ‘ 𝑖 )  +  𝑇 )  =  ( ( 𝑆 ‘ 𝑗 )  +  𝑇 ) ) | 
						
							| 65 | 64 | cbvmptv | ⊢ ( 𝑖  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑆 ‘ 𝑖 )  +  𝑇 ) )  =  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  ( ( 𝑆 ‘ 𝑗 )  +  𝑇 ) ) | 
						
							| 66 |  | eqid | ⊢ ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( ( 𝐴  −  𝑋 )  +  𝑇 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐴  +  𝑇 ) )  ∧  ∀ 𝑗  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) } )  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( ( 𝐴  −  𝑋 )  +  𝑇 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐴  +  𝑇 ) )  ∧  ∀ 𝑗  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 )  <  ( 𝑝 ‘ ( 𝑗  +  1 ) ) ) } ) | 
						
							| 67 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  𝑀  ∈  ℕ ) | 
						
							| 68 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 69 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 70 | 9 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 71 | 10 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 72 | 39 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝐴  −  𝑋 )  ∈  ℝ ) | 
						
							| 73 | 72 | rexrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝐴  −  𝑋 )  ∈  ℝ* ) | 
						
							| 74 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 75 | 74 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  +∞  ∈  ℝ* ) | 
						
							| 76 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 77 | 50 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝐴  −  𝑋 )  <  𝐴 ) | 
						
							| 78 | 1 | ltpnfd | ⊢ ( 𝜑  →  𝐴  <  +∞ ) | 
						
							| 79 | 78 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  𝐴  <  +∞ ) | 
						
							| 80 | 73 75 76 77 79 | eliood | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  𝐴  ∈  ( ( 𝐴  −  𝑋 ) (,) +∞ ) ) | 
						
							| 81 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  𝑗  ∈  ( 0 ..^ 𝑁 ) ) | 
						
							| 82 |  | eqid | ⊢ ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) )  =  ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 83 |  | eqid | ⊢ ( 𝐹  ↾  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) )  =  ( 𝐹  ↾  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 84 |  | eqid | ⊢ ( 𝑦  ∈  ( ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) )  +  ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) (,) ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) )  +  ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) )  ↦  ( ( 𝐹  ↾  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) ‘ ( 𝑦  −  ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) ) )  =  ( 𝑦  ∈  ( ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) )  +  ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) (,) ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) )  +  ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) )  ↦  ( ( 𝐹  ↾  ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) ‘ ( 𝑦  −  ( ( 𝑆 ‘ ( 𝑗  +  1 ) )  −  ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) ) ) ) | 
						
							| 85 | 5 3 67 68 69 70 71 72 80 13 14 15 16 17 18 81 82 83 84 19 | fourierdlem90 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) )  ∈  ( ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 86 | 11 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 87 |  | eqid | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↦  𝑅 )  =  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↦  𝑅 ) | 
						
							| 88 | 5 3 67 68 69 70 71 86 72 80 13 14 15 16 17 18 81 82 19 87 | fourierdlem89 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  if ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) )  =  ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ,  ( ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↦  𝑅 ) ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ,  ( 𝐹 ‘ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) )  limℂ  ( 𝑆 ‘ 𝑗 ) ) ) | 
						
							| 89 | 12 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 90 |  | eqid | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↦  𝐿 )  =  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↦  𝐿 ) | 
						
							| 91 | 5 3 67 68 69 70 71 89 72 80 13 14 15 16 17 18 81 82 19 90 | fourierdlem91 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ..^ 𝑁 ) )  →  if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) )  =  ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) )  +  1 ) ) ,  ( ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↦  𝐿 ) ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ,  ( 𝐹 ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) )  limℂ  ( 𝑆 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 92 | 39 1 49 53 55 56 62 65 66 8 85 88 91 | fourierdlem92 | ⊢ ( 𝜑  →  ∫ ( ( ( 𝐴  −  𝑋 )  +  𝑇 ) [,] ( 𝐴  +  𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 93 | 38 92 | eqtrd | ⊢ ( 𝜑  →  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 94 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 95 | 29 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) )  →  ( 𝐵  −  𝑋 )  ∈  ℝ ) | 
						
							| 96 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 97 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) )  →  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ) | 
						
							| 98 |  | eliccre | ⊢ ( ( ( 𝐵  −  𝑋 )  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 99 | 95 96 97 98 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 100 | 94 99 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 101 | 29 | rexrd | ⊢ ( 𝜑  →  ( 𝐵  −  𝑋 )  ∈  ℝ* ) | 
						
							| 102 | 74 | a1i | ⊢ ( 𝜑  →  +∞  ∈  ℝ* ) | 
						
							| 103 | 2 4 | ltsubrpd | ⊢ ( 𝜑  →  ( 𝐵  −  𝑋 )  <  𝐵 ) | 
						
							| 104 | 2 | ltpnfd | ⊢ ( 𝜑  →  𝐵  <  +∞ ) | 
						
							| 105 | 101 102 2 103 104 | eliood | ⊢ ( 𝜑  →  𝐵  ∈  ( ( 𝐵  −  𝑋 ) (,) +∞ ) ) | 
						
							| 106 | 5 3 6 7 8 9 10 11 12 29 105 | fourierdlem105 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 ) | 
						
							| 107 | 100 106 | itgcl | ⊢ ( 𝜑  →  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ ) | 
						
							| 108 | 93 107 | eqeltrrd | ⊢ ( 𝜑  →  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ ) | 
						
							| 109 | 108 | subidd | ⊢ ( 𝜑  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  0 ) | 
						
							| 110 | 109 | eqcomd | ⊢ ( 𝜑  →  0  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 111 | 110 | adantr | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  0  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 112 | 39 | adantr | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 𝐴  −  𝑋 )  ∈  ℝ ) | 
						
							| 113 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  𝐴  ∈  ℝ ) | 
						
							| 114 | 29 | adantr | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 𝐵  −  𝑋 )  ∈  ℝ ) | 
						
							| 115 | 5 6 7 | fourierdlem11 | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 ) ) | 
						
							| 116 | 115 | simp3d | ⊢ ( 𝜑  →  𝐴  <  𝐵 ) | 
						
							| 117 | 1 2 116 | ltled | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
						
							| 118 | 117 | adantr | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  𝐴  ≤  𝐵 ) | 
						
							| 119 | 1 2 22 | lesub1d | ⊢ ( 𝜑  →  ( 𝐴  ≤  𝐵  ↔  ( 𝐴  −  𝑋 )  ≤  ( 𝐵  −  𝑋 ) ) ) | 
						
							| 120 | 119 | adantr | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 𝐴  ≤  𝐵  ↔  ( 𝐴  −  𝑋 )  ≤  ( 𝐵  −  𝑋 ) ) ) | 
						
							| 121 | 118 120 | mpbid | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 𝐴  −  𝑋 )  ≤  ( 𝐵  −  𝑋 ) ) | 
						
							| 122 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  𝐵  ∈  ℝ ) | 
						
							| 123 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  𝑋  ∈  ℝ ) | 
						
							| 124 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  𝑇  <  𝑋 ) | 
						
							| 125 | 3 124 | eqbrtrrid | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 𝐵  −  𝐴 )  <  𝑋 ) | 
						
							| 126 | 122 113 123 125 | ltsub23d | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 𝐵  −  𝑋 )  <  𝐴 ) | 
						
							| 127 | 114 113 126 | ltled | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 𝐵  −  𝑋 )  ≤  𝐴 ) | 
						
							| 128 | 112 113 114 121 127 | eliccd | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 𝐵  −  𝑋 )  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ) | 
						
							| 129 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 130 | 129 61 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 131 | 130 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑇  <  𝑋 )  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 132 | 39 | rexrd | ⊢ ( 𝜑  →  ( 𝐴  −  𝑋 )  ∈  ℝ* ) | 
						
							| 133 | 1 2 22 116 | ltsub1dd | ⊢ ( 𝜑  →  ( 𝐴  −  𝑋 )  <  ( 𝐵  −  𝑋 ) ) | 
						
							| 134 | 29 | ltpnfd | ⊢ ( 𝜑  →  ( 𝐵  −  𝑋 )  <  +∞ ) | 
						
							| 135 | 132 102 29 133 134 | eliood | ⊢ ( 𝜑  →  ( 𝐵  −  𝑋 )  ∈  ( ( 𝐴  −  𝑋 ) (,) +∞ ) ) | 
						
							| 136 | 5 3 6 7 8 9 10 11 12 39 135 | fourierdlem105 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 ) | 
						
							| 137 | 136 | adantr | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 ) | 
						
							| 138 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  𝑀  ∈  ℕ ) | 
						
							| 139 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 140 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 141 | 9 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑇  <  𝑋 )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 142 | 10 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑇  <  𝑋 )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 143 | 11 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑇  <  𝑋 )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 144 | 12 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑇  <  𝑋 )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 145 | 101 | adantr | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 𝐵  −  𝑋 )  ∈  ℝ* ) | 
						
							| 146 | 74 | a1i | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  +∞  ∈  ℝ* ) | 
						
							| 147 | 113 | ltpnfd | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  𝐴  <  +∞ ) | 
						
							| 148 | 145 146 113 126 147 | eliood | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  𝐴  ∈  ( ( 𝐵  −  𝑋 ) (,) +∞ ) ) | 
						
							| 149 | 5 3 138 139 140 141 142 143 144 114 148 | fourierdlem105 | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐴 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 ) | 
						
							| 150 | 112 113 128 131 137 149 | itgspliticc | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 151 | 150 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 152 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 153 | 39 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) )  →  ( 𝐴  −  𝑋 )  ∈  ℝ ) | 
						
							| 154 | 29 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) )  →  ( 𝐵  −  𝑋 )  ∈  ℝ ) | 
						
							| 155 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) )  →  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ) | 
						
							| 156 |  | eliccre | ⊢ ( ( ( 𝐴  −  𝑋 )  ∈  ℝ  ∧  ( 𝐵  −  𝑋 )  ∈  ℝ  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 157 | 153 154 155 156 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 158 | 152 157 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 159 | 158 136 | itgcl | ⊢ ( 𝜑  →  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ ) | 
						
							| 160 | 159 | adantr | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ ) | 
						
							| 161 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 162 | 29 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) )  →  ( 𝐵  −  𝑋 )  ∈  ℝ ) | 
						
							| 163 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 164 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) )  →  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ) | 
						
							| 165 |  | eliccre | ⊢ ( ( ( 𝐵  −  𝑋 )  ∈  ℝ  ∧  𝐴  ∈  ℝ  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 166 | 162 163 164 165 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 167 | 161 166 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 168 | 167 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑇  <  𝑋 )  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 169 | 168 149 | itgcl | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ ) | 
						
							| 170 | 108 | adantr | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ ) | 
						
							| 171 | 160 169 170 | addsubassd | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) ) | 
						
							| 172 | 111 151 171 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  0  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) ) | 
						
							| 173 | 172 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  0 )  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) ) ) | 
						
							| 174 | 160 | subid1d | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  0 )  =  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 175 | 159 | subidd | ⊢ ( 𝜑  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  0 ) | 
						
							| 176 | 175 | oveq1d | ⊢ ( 𝜑  →  ( ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ( 0  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) ) | 
						
							| 177 | 176 | adantr | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ( 0  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) ) | 
						
							| 178 | 169 170 | subcld | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  ∈  ℂ ) | 
						
							| 179 | 160 160 178 | subsub4d | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) ) ) | 
						
							| 180 |  | df-neg | ⊢ - ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( 0  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 181 | 169 170 | negsubdi2d | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  - ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 182 | 180 181 | eqtr3id | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 0  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 183 | 177 179 182 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) )  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 184 | 173 174 183 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 185 | 107 | subidd | ⊢ ( 𝜑  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  0 ) | 
						
							| 186 | 185 | eqcomd | ⊢ ( 𝜑  →  0  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 187 | 186 | oveq2d | ⊢ ( 𝜑  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  0 )  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) ) | 
						
							| 188 | 187 | adantr | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  0 )  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) ) | 
						
							| 189 | 169 | addridd | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  0 )  =  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 190 | 114 122 113 127 118 | eliccd | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  𝐴  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ) | 
						
							| 191 | 100 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑇  <  𝑋 )  ∧  𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 192 | 1 2 | iccssred | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 193 | 8 192 | feqresmpt | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 194 | 8 192 | fssresd | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | 
						
							| 195 |  | ioossicc | ⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 196 | 1 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 197 | 196 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 198 | 2 | rexrd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 199 | 198 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐵  ∈  ℝ* ) | 
						
							| 200 | 5 6 7 | fourierdlem15 | ⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) | 
						
							| 201 | 200 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) | 
						
							| 202 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑖  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 203 | 197 199 201 202 | fourierdlem8 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 204 | 195 203 | sstrid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 205 | 204 | resabs1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 206 | 205 10 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 207 | 205 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 208 | 207 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) )  =  ( ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 209 | 11 208 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 210 | 207 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  =  ( ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 211 | 12 210 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 212 | 5 6 7 194 206 209 211 | fourierdlem69 | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  𝐿1 ) | 
						
							| 213 | 193 212 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 ) | 
						
							| 214 | 213 | adantr | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 ) | 
						
							| 215 | 114 122 190 191 149 214 | itgspliticc | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 216 | 215 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) ) | 
						
							| 217 | 216 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) ) ) | 
						
							| 218 | 107 | adantr | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ ) | 
						
							| 219 | 215 218 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  ∈  ℂ ) | 
						
							| 220 | 169 218 219 | addsub12d | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) )  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) ) ) | 
						
							| 221 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 222 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 223 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 224 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 225 |  | eliccre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 226 | 222 223 224 225 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 227 | 221 226 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 228 | 227 213 | itgcl | ⊢ ( 𝜑  →  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ ) | 
						
							| 229 | 228 | adantr | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ ) | 
						
							| 230 | 169 169 229 | subsub4d | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) ) | 
						
							| 231 | 230 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ( ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 232 | 231 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) )  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) ) | 
						
							| 233 | 169 | subidd | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  0 ) | 
						
							| 234 | 233 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( 0  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 235 |  | df-neg | ⊢ - ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ( 0  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 236 | 234 235 | eqtr4di | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  - ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 237 | 236 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  - ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 238 | 218 229 | negsubd | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  - ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 239 | 232 237 238 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) )  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 240 | 217 220 239 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 241 | 188 189 240 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 242 | 241 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) ) | 
						
							| 243 | 108 107 228 | subsubd | ⊢ ( 𝜑  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ( ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 244 | 93 | oveq2d | ⊢ ( 𝜑  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 245 | 244 109 | eqtrd | ⊢ ( 𝜑  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  0 ) | 
						
							| 246 | 245 | oveq1d | ⊢ ( 𝜑  →  ( ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( 0  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 247 | 228 | addlidd | ⊢ ( 𝜑  →  ( 0  +  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 248 | 243 246 247 | 3eqtrd | ⊢ ( 𝜑  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 249 | 248 | adantr | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 250 | 184 242 249 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑇  <  𝑋 )  →  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 251 | 39 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( 𝐴  −  𝑋 )  ∈  ℝ ) | 
						
							| 252 | 29 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( 𝐵  −  𝑋 )  ∈  ℝ ) | 
						
							| 253 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  𝐴  ∈  ℝ ) | 
						
							| 254 | 39 1 50 | ltled | ⊢ ( 𝜑  →  ( 𝐴  −  𝑋 )  ≤  𝐴 ) | 
						
							| 255 | 254 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( 𝐴  −  𝑋 )  ≤  𝐴 ) | 
						
							| 256 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  𝑋  ∈  ℝ ) | 
						
							| 257 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  𝐵  ∈  ℝ ) | 
						
							| 258 |  | id | ⊢ ( 𝑋  ≤  𝑇  →  𝑋  ≤  𝑇 ) | 
						
							| 259 | 258 3 | breqtrdi | ⊢ ( 𝑋  ≤  𝑇  →  𝑋  ≤  ( 𝐵  −  𝐴 ) ) | 
						
							| 260 | 259 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  𝑋  ≤  ( 𝐵  −  𝐴 ) ) | 
						
							| 261 | 256 257 253 260 | lesubd | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  𝐴  ≤  ( 𝐵  −  𝑋 ) ) | 
						
							| 262 | 251 252 253 255 261 | eliccd | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  𝐴  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ) | 
						
							| 263 | 158 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  ∧  𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 264 | 132 102 1 50 78 | eliood | ⊢ ( 𝜑  →  𝐴  ∈  ( ( 𝐴  −  𝑋 ) (,) +∞ ) ) | 
						
							| 265 | 5 3 6 7 8 9 10 11 12 39 264 | fourierdlem105 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 ) | 
						
							| 266 | 265 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( 𝑥  ∈  ( ( 𝐴  −  𝑋 ) [,] 𝐴 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 ) | 
						
							| 267 | 1 | leidd | ⊢ ( 𝜑  →  𝐴  ≤  𝐴 ) | 
						
							| 268 | 4 | rpge0d | ⊢ ( 𝜑  →  0  ≤  𝑋 ) | 
						
							| 269 | 2 22 | subge02d | ⊢ ( 𝜑  →  ( 0  ≤  𝑋  ↔  ( 𝐵  −  𝑋 )  ≤  𝐵 ) ) | 
						
							| 270 | 268 269 | mpbid | ⊢ ( 𝜑  →  ( 𝐵  −  𝑋 )  ≤  𝐵 ) | 
						
							| 271 |  | iccss | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐴  ≤  𝐴  ∧  ( 𝐵  −  𝑋 )  ≤  𝐵 ) )  →  ( 𝐴 [,] ( 𝐵  −  𝑋 ) )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 272 | 1 2 267 270 271 | syl22anc | ⊢ ( 𝜑  →  ( 𝐴 [,] ( 𝐵  −  𝑋 ) )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 273 |  | iccmbl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  −  𝑋 )  ∈  ℝ )  →  ( 𝐴 [,] ( 𝐵  −  𝑋 ) )  ∈  dom  vol ) | 
						
							| 274 | 1 29 273 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 [,] ( 𝐵  −  𝑋 ) )  ∈  dom  vol ) | 
						
							| 275 | 272 274 227 213 | iblss | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] ( 𝐵  −  𝑋 ) )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 ) | 
						
							| 276 | 275 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( 𝑥  ∈  ( 𝐴 [,] ( 𝐵  −  𝑋 ) )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 ) | 
						
							| 277 | 251 252 262 263 266 276 | itgspliticc | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 278 | 268 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  0  ≤  𝑋 ) | 
						
							| 279 | 269 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( 0  ≤  𝑋  ↔  ( 𝐵  −  𝑋 )  ≤  𝐵 ) ) | 
						
							| 280 | 278 279 | mpbid | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( 𝐵  −  𝑋 )  ≤  𝐵 ) | 
						
							| 281 | 253 257 252 261 280 | eliccd | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( 𝐵  −  𝑋 )  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 282 | 227 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 283 | 2 | leidd | ⊢ ( 𝜑  →  𝐵  ≤  𝐵 ) | 
						
							| 284 | 283 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  𝐵  ≤  𝐵 ) | 
						
							| 285 |  | iccss | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐴  ≤  ( 𝐵  −  𝑋 )  ∧  𝐵  ≤  𝐵 ) )  →  ( ( 𝐵  −  𝑋 ) [,] 𝐵 )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 286 | 253 257 261 284 285 | syl22anc | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( ( 𝐵  −  𝑋 ) [,] 𝐵 )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 287 |  | iccmbl | ⊢ ( ( ( 𝐵  −  𝑋 )  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐵  −  𝑋 ) [,] 𝐵 )  ∈  dom  vol ) | 
						
							| 288 | 29 2 287 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐵  −  𝑋 ) [,] 𝐵 )  ∈  dom  vol ) | 
						
							| 289 | 288 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( ( 𝐵  −  𝑋 ) [,] 𝐵 )  ∈  dom  vol ) | 
						
							| 290 | 213 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 ) | 
						
							| 291 | 286 289 282 290 | iblss | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( 𝑥  ∈  ( ( 𝐵  −  𝑋 ) [,] 𝐵 )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  𝐿1 ) | 
						
							| 292 | 253 257 281 282 276 291 | itgspliticc | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ( ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 293 | 292 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ( ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 294 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 295 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 296 | 29 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) )  →  ( 𝐵  −  𝑋 )  ∈  ℝ ) | 
						
							| 297 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) )  →  𝑥  ∈  ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ) | 
						
							| 298 |  | eliccre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  −  𝑋 )  ∈  ℝ  ∧  𝑥  ∈  ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 299 | 295 296 297 298 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 300 | 294 299 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 301 | 300 275 | itgcl | ⊢ ( 𝜑  →  ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ ) | 
						
							| 302 | 301 107 107 | addsubassd | ⊢ ( 𝜑  →  ( ( ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) ) | 
						
							| 303 | 302 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( ( ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) ) | 
						
							| 304 | 185 | oveq2d | ⊢ ( 𝜑  →  ( ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ( ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  0 ) ) | 
						
							| 305 | 301 | addridd | ⊢ ( 𝜑  →  ( ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  0 )  =  ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 306 | 304 305 | eqtrd | ⊢ ( 𝜑  →  ( ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 307 | 306 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 308 | 293 303 307 | 3eqtrrd | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 309 | 308 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( 𝐴 [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) ) | 
						
							| 310 | 93 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 311 | 107 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ ) | 
						
							| 312 | 310 311 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ ) | 
						
							| 313 | 282 290 | itgcl | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  ∈  ℂ ) | 
						
							| 314 | 312 313 311 | addsub12d | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) ) | 
						
							| 315 | 313 312 311 | addsubassd | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) ) | 
						
							| 316 | 314 315 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) )  =  ( ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 317 | 277 309 316 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ( ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 318 | 310 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( ( 𝐵  −  𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ( ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) ) | 
						
							| 319 | 313 312 | pncand | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ( ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  +  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  −  ∫ ( ( 𝐴  −  𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 )  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 320 | 317 318 319 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  ≤  𝑇 )  →  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 321 | 250 320 55 22 | ltlecasei | ⊢ ( 𝜑  →  ∫ ( ( 𝐴  −  𝑋 ) [,] ( 𝐵  −  𝑋 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) |