| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem107.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
fourierdlem107.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
fourierdlem107.t |
⊢ 𝑇 = ( 𝐵 − 𝐴 ) |
| 4 |
|
fourierdlem107.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ+ ) |
| 5 |
|
fourierdlem107.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 6 |
|
fourierdlem107.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 7 |
|
fourierdlem107.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
| 8 |
|
fourierdlem107.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
| 9 |
|
fourierdlem107.fper |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 10 |
|
fourierdlem107.fcn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 11 |
|
fourierdlem107.r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 12 |
|
fourierdlem107.l |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 13 |
|
fourierdlem107.o |
⊢ 𝑂 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 − 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = 𝐴 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 14 |
|
fourierdlem107.h |
⊢ 𝐻 = ( { ( 𝐴 − 𝑋 ) , 𝐴 } ∪ { 𝑦 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) |
| 15 |
|
fourierdlem107.n |
⊢ 𝑁 = ( ( ♯ ‘ 𝐻 ) − 1 ) |
| 16 |
|
fourierdlem107.s |
⊢ 𝑆 = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) |
| 17 |
|
fourierdlem107.e |
⊢ 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 18 |
|
fourierdlem107.z |
⊢ 𝑍 = ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) |
| 19 |
|
fourierdlem107.i |
⊢ 𝐼 = ( 𝑥 ∈ ℝ ↦ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑍 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) ) |
| 20 |
3
|
oveq2i |
⊢ ( ( 𝐴 − 𝑋 ) + 𝑇 ) = ( ( 𝐴 − 𝑋 ) + ( 𝐵 − 𝐴 ) ) |
| 21 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 22 |
4
|
rpred |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 23 |
22
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 24 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 25 |
21 23 24 21
|
subadd4b |
⊢ ( 𝜑 → ( ( 𝐴 − 𝑋 ) + ( 𝐵 − 𝐴 ) ) = ( ( 𝐴 − 𝐴 ) + ( 𝐵 − 𝑋 ) ) ) |
| 26 |
20 25
|
eqtrid |
⊢ ( 𝜑 → ( ( 𝐴 − 𝑋 ) + 𝑇 ) = ( ( 𝐴 − 𝐴 ) + ( 𝐵 − 𝑋 ) ) ) |
| 27 |
21
|
subidd |
⊢ ( 𝜑 → ( 𝐴 − 𝐴 ) = 0 ) |
| 28 |
27
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐴 ) + ( 𝐵 − 𝑋 ) ) = ( 0 + ( 𝐵 − 𝑋 ) ) ) |
| 29 |
2 22
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝑋 ) ∈ ℝ ) |
| 30 |
29
|
recnd |
⊢ ( 𝜑 → ( 𝐵 − 𝑋 ) ∈ ℂ ) |
| 31 |
30
|
addlidd |
⊢ ( 𝜑 → ( 0 + ( 𝐵 − 𝑋 ) ) = ( 𝐵 − 𝑋 ) ) |
| 32 |
26 28 31
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 − 𝑋 ) + 𝑇 ) = ( 𝐵 − 𝑋 ) ) |
| 33 |
3
|
oveq2i |
⊢ ( 𝐴 + 𝑇 ) = ( 𝐴 + ( 𝐵 − 𝐴 ) ) |
| 34 |
21 24
|
pncan3d |
⊢ ( 𝜑 → ( 𝐴 + ( 𝐵 − 𝐴 ) ) = 𝐵 ) |
| 35 |
33 34
|
eqtrid |
⊢ ( 𝜑 → ( 𝐴 + 𝑇 ) = 𝐵 ) |
| 36 |
32 35
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐴 − 𝑋 ) + 𝑇 ) [,] ( 𝐴 + 𝑇 ) ) = ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ) |
| 37 |
36
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) = ( ( ( 𝐴 − 𝑋 ) + 𝑇 ) [,] ( 𝐴 + 𝑇 ) ) ) |
| 38 |
37
|
itgeq1d |
⊢ ( 𝜑 → ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( ( ( 𝐴 − 𝑋 ) + 𝑇 ) [,] ( 𝐴 + 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 39 |
1 22
|
resubcld |
⊢ ( 𝜑 → ( 𝐴 − 𝑋 ) ∈ ℝ ) |
| 40 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑝 ‘ 𝑖 ) = ( 𝑝 ‘ 𝑗 ) ) |
| 41 |
|
oveq1 |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 + 1 ) = ( 𝑗 + 1 ) ) |
| 42 |
41
|
fveq2d |
⊢ ( 𝑖 = 𝑗 → ( 𝑝 ‘ ( 𝑖 + 1 ) ) = ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) |
| 43 |
40 42
|
breq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) ) |
| 44 |
43
|
cbvralvw |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ↔ ∀ 𝑗 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) |
| 45 |
44
|
a1i |
⊢ ( 𝑚 ∈ ℕ → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ↔ ∀ 𝑗 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) ) |
| 46 |
45
|
anbi2d |
⊢ ( 𝑚 ∈ ℕ → ( ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 − 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = 𝐴 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 − 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = 𝐴 ) ∧ ∀ 𝑗 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 47 |
46
|
rabbidv |
⊢ ( 𝑚 ∈ ℕ → { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 − 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = 𝐴 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } = { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 − 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = 𝐴 ) ∧ ∀ 𝑗 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) } ) |
| 48 |
47
|
mpteq2ia |
⊢ ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 − 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = 𝐴 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 − 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = 𝐴 ) ∧ ∀ 𝑗 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) } ) |
| 49 |
13 48
|
eqtri |
⊢ 𝑂 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 − 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = 𝐴 ) ∧ ∀ 𝑗 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) } ) |
| 50 |
1 4
|
ltsubrpd |
⊢ ( 𝜑 → ( 𝐴 − 𝑋 ) < 𝐴 ) |
| 51 |
3 5 6 7 39 1 50 13 14 15 16
|
fourierdlem54 |
⊢ ( 𝜑 → ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) ∧ 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) ) |
| 52 |
51
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) ) |
| 53 |
52
|
simpld |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 54 |
2 1
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 55 |
3 54
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 56 |
52
|
simprd |
⊢ ( 𝜑 → 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) |
| 57 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ) → ( 𝐴 − 𝑋 ) ∈ ℝ ) |
| 58 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ) → 𝐴 ∈ ℝ ) |
| 59 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ) → 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ) |
| 60 |
|
eliccre |
⊢ ( ( ( 𝐴 − 𝑋 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ) → 𝑥 ∈ ℝ ) |
| 61 |
57 58 59 60
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ) → 𝑥 ∈ ℝ ) |
| 62 |
61 9
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 63 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑆 ‘ 𝑖 ) = ( 𝑆 ‘ 𝑗 ) ) |
| 64 |
63
|
oveq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑆 ‘ 𝑖 ) + 𝑇 ) = ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) |
| 65 |
64
|
cbvmptv |
⊢ ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑖 ) + 𝑇 ) ) = ( 𝑗 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑆 ‘ 𝑗 ) + 𝑇 ) ) |
| 66 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( ( 𝐴 − 𝑋 ) + 𝑇 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐴 + 𝑇 ) ) ∧ ∀ 𝑗 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) } ) = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( ( 𝐴 − 𝑋 ) + 𝑇 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐴 + 𝑇 ) ) ∧ ∀ 𝑗 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) } ) |
| 67 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑀 ∈ ℕ ) |
| 68 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
| 69 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐹 : ℝ ⟶ ℂ ) |
| 70 |
9
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 71 |
10
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 72 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 − 𝑋 ) ∈ ℝ ) |
| 73 |
72
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 − 𝑋 ) ∈ ℝ* ) |
| 74 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 75 |
74
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → +∞ ∈ ℝ* ) |
| 76 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐴 ∈ ℝ ) |
| 77 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐴 − 𝑋 ) < 𝐴 ) |
| 78 |
1
|
ltpnfd |
⊢ ( 𝜑 → 𝐴 < +∞ ) |
| 79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐴 < +∞ ) |
| 80 |
73 75 76 77 79
|
eliood |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐴 ∈ ( ( 𝐴 − 𝑋 ) (,) +∞ ) ) |
| 81 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑗 ∈ ( 0 ..^ 𝑁 ) ) |
| 82 |
|
eqid |
⊢ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 83 |
|
eqid |
⊢ ( 𝐹 ↾ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( 𝐹 ↾ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 84 |
|
eqid |
⊢ ( 𝑦 ∈ ( ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) + ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) (,) ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) + ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ‘ ( 𝑦 − ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ) = ( 𝑦 ∈ ( ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) + ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) (,) ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) + ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ‘ ( 𝑦 − ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ) |
| 85 |
5 3 67 68 69 70 71 72 80 13 14 15 16 17 18 81 82 83 84 19
|
fourierdlem90 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ∈ ( ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) –cn→ ℂ ) ) |
| 86 |
11
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 87 |
|
eqid |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝑅 ) = ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝑅 ) |
| 88 |
5 3 67 68 69 70 71 86 72 80 13 14 15 16 17 18 81 82 19 87
|
fourierdlem89 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → if ( ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) , ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝑅 ) ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) , ( 𝐹 ‘ ( 𝑍 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑆 ‘ 𝑗 ) ) ) |
| 89 |
12
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 90 |
|
eqid |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝐿 ) = ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝐿 ) |
| 91 |
5 3 67 68 69 70 71 89 72 80 13 14 15 16 17 18 81 82 19 90
|
fourierdlem91 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) , ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝐿 ) ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) , ( 𝐹 ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 92 |
39 1 49 53 55 56 62 65 66 8 85 88 91
|
fourierdlem92 |
⊢ ( 𝜑 → ∫ ( ( ( 𝐴 − 𝑋 ) + 𝑇 ) [,] ( 𝐴 + 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 93 |
38 92
|
eqtrd |
⊢ ( 𝜑 → ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 94 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ) → 𝐹 : ℝ ⟶ ℂ ) |
| 95 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ) → ( 𝐵 − 𝑋 ) ∈ ℝ ) |
| 96 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 97 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ) → 𝑥 ∈ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ) |
| 98 |
|
eliccre |
⊢ ( ( ( 𝐵 − 𝑋 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 99 |
95 96 97 98
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 100 |
94 99
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 101 |
29
|
rexrd |
⊢ ( 𝜑 → ( 𝐵 − 𝑋 ) ∈ ℝ* ) |
| 102 |
74
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 103 |
2 4
|
ltsubrpd |
⊢ ( 𝜑 → ( 𝐵 − 𝑋 ) < 𝐵 ) |
| 104 |
2
|
ltpnfd |
⊢ ( 𝜑 → 𝐵 < +∞ ) |
| 105 |
101 102 2 103 104
|
eliood |
⊢ ( 𝜑 → 𝐵 ∈ ( ( 𝐵 − 𝑋 ) (,) +∞ ) ) |
| 106 |
5 3 6 7 8 9 10 11 12 29 105
|
fourierdlem105 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
| 107 |
100 106
|
itgcl |
⊢ ( 𝜑 → ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ∈ ℂ ) |
| 108 |
93 107
|
eqeltrrd |
⊢ ( 𝜑 → ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ∈ ℂ ) |
| 109 |
108
|
subidd |
⊢ ( 𝜑 → ( ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) = 0 ) |
| 110 |
109
|
eqcomd |
⊢ ( 𝜑 → 0 = ( ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 111 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → 0 = ( ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 112 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( 𝐴 − 𝑋 ) ∈ ℝ ) |
| 113 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → 𝐴 ∈ ℝ ) |
| 114 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( 𝐵 − 𝑋 ) ∈ ℝ ) |
| 115 |
5 6 7
|
fourierdlem11 |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ) |
| 116 |
115
|
simp3d |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
| 117 |
1 2 116
|
ltled |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 118 |
117
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → 𝐴 ≤ 𝐵 ) |
| 119 |
1 2 22
|
lesub1d |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 − 𝑋 ) ≤ ( 𝐵 − 𝑋 ) ) ) |
| 120 |
119
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 − 𝑋 ) ≤ ( 𝐵 − 𝑋 ) ) ) |
| 121 |
118 120
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( 𝐴 − 𝑋 ) ≤ ( 𝐵 − 𝑋 ) ) |
| 122 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → 𝐵 ∈ ℝ ) |
| 123 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → 𝑋 ∈ ℝ ) |
| 124 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → 𝑇 < 𝑋 ) |
| 125 |
3 124
|
eqbrtrrid |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( 𝐵 − 𝐴 ) < 𝑋 ) |
| 126 |
122 113 123 125
|
ltsub23d |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( 𝐵 − 𝑋 ) < 𝐴 ) |
| 127 |
114 113 126
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( 𝐵 − 𝑋 ) ≤ 𝐴 ) |
| 128 |
112 113 114 121 127
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( 𝐵 − 𝑋 ) ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ) |
| 129 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ) → 𝐹 : ℝ ⟶ ℂ ) |
| 130 |
129 61
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 131 |
130
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑇 < 𝑋 ) ∧ 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 132 |
39
|
rexrd |
⊢ ( 𝜑 → ( 𝐴 − 𝑋 ) ∈ ℝ* ) |
| 133 |
1 2 22 116
|
ltsub1dd |
⊢ ( 𝜑 → ( 𝐴 − 𝑋 ) < ( 𝐵 − 𝑋 ) ) |
| 134 |
29
|
ltpnfd |
⊢ ( 𝜑 → ( 𝐵 − 𝑋 ) < +∞ ) |
| 135 |
132 102 29 133 134
|
eliood |
⊢ ( 𝜑 → ( 𝐵 − 𝑋 ) ∈ ( ( 𝐴 − 𝑋 ) (,) +∞ ) ) |
| 136 |
5 3 6 7 8 9 10 11 12 39 135
|
fourierdlem105 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
| 137 |
136
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
| 138 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → 𝑀 ∈ ℕ ) |
| 139 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
| 140 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → 𝐹 : ℝ ⟶ ℂ ) |
| 141 |
9
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑇 < 𝑋 ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 142 |
10
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑇 < 𝑋 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 143 |
11
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑇 < 𝑋 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 144 |
12
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑇 < 𝑋 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 145 |
101
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( 𝐵 − 𝑋 ) ∈ ℝ* ) |
| 146 |
74
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → +∞ ∈ ℝ* ) |
| 147 |
113
|
ltpnfd |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → 𝐴 < +∞ ) |
| 148 |
145 146 113 126 147
|
eliood |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → 𝐴 ∈ ( ( 𝐵 − 𝑋 ) (,) +∞ ) ) |
| 149 |
5 3 138 139 140 141 142 143 144 114 148
|
fourierdlem105 |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( 𝑥 ∈ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
| 150 |
112 113 128 131 137 149
|
itgspliticc |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ( ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 151 |
150
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) = ( ( ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) − ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 152 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → 𝐹 : ℝ ⟶ ℂ ) |
| 153 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝐴 − 𝑋 ) ∈ ℝ ) |
| 154 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝐵 − 𝑋 ) ∈ ℝ ) |
| 155 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) |
| 156 |
|
eliccre |
⊢ ( ( ( 𝐴 − 𝑋 ) ∈ ℝ ∧ ( 𝐵 − 𝑋 ) ∈ ℝ ∧ 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → 𝑥 ∈ ℝ ) |
| 157 |
153 154 155 156
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → 𝑥 ∈ ℝ ) |
| 158 |
152 157
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 159 |
158 136
|
itgcl |
⊢ ( 𝜑 → ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ∈ ℂ ) |
| 160 |
159
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ∈ ℂ ) |
| 161 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ) → 𝐹 : ℝ ⟶ ℂ ) |
| 162 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ) → ( 𝐵 − 𝑋 ) ∈ ℝ ) |
| 163 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ) → 𝐴 ∈ ℝ ) |
| 164 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ) → 𝑥 ∈ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ) |
| 165 |
|
eliccre |
⊢ ( ( ( 𝐵 − 𝑋 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ) → 𝑥 ∈ ℝ ) |
| 166 |
162 163 164 165
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ) → 𝑥 ∈ ℝ ) |
| 167 |
161 166
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 168 |
167
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑇 < 𝑋 ) ∧ 𝑥 ∈ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 169 |
168 149
|
itgcl |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ∈ ℂ ) |
| 170 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ∈ ℂ ) |
| 171 |
160 169 170
|
addsubassd |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ( ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) − ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) = ( ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) ) |
| 172 |
111 151 171
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → 0 = ( ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) ) |
| 173 |
172
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − 0 ) = ( ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ( ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) ) ) |
| 174 |
160
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − 0 ) = ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 175 |
159
|
subidd |
⊢ ( 𝜑 → ( ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) = 0 ) |
| 176 |
175
|
oveq1d |
⊢ ( 𝜑 → ( ( ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) − ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) = ( 0 − ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) ) |
| 177 |
176
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ( ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) − ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) = ( 0 − ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) ) |
| 178 |
169 170
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ∈ ℂ ) |
| 179 |
160 160 178
|
subsub4d |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ( ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) − ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) = ( ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ( ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) ) ) |
| 180 |
|
df-neg |
⊢ - ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) = ( 0 − ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 181 |
169 170
|
negsubdi2d |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → - ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) = ( ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 182 |
180 181
|
eqtr3id |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( 0 − ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) = ( ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 183 |
177 179 182
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ( ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) ) = ( ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 184 |
173 174 183
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ( ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 185 |
107
|
subidd |
⊢ ( 𝜑 → ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) = 0 ) |
| 186 |
185
|
eqcomd |
⊢ ( 𝜑 → 0 = ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 187 |
186
|
oveq2d |
⊢ ( 𝜑 → ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + 0 ) = ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) ) |
| 188 |
187
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + 0 ) = ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) ) |
| 189 |
169
|
addridd |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + 0 ) = ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 190 |
114 122 113 127 118
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → 𝐴 ∈ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ) |
| 191 |
100
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑇 < 𝑋 ) ∧ 𝑥 ∈ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 192 |
1 2
|
iccssred |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 193 |
8 192
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 194 |
8 192
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 195 |
|
ioossicc |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 196 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 197 |
196
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐴 ∈ ℝ* ) |
| 198 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 199 |
198
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐵 ∈ ℝ* ) |
| 200 |
5 6 7
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
| 201 |
200
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
| 202 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 203 |
197 199 201 202
|
fourierdlem8 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 204 |
195 203
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 205 |
204
|
resabs1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 206 |
205 10
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 207 |
205
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 208 |
207
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 209 |
11 208
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 210 |
207
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 211 |
12 210
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 212 |
5 6 7 194 206 209 211
|
fourierdlem69 |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 [,] 𝐵 ) ) ∈ 𝐿1 ) |
| 213 |
193 212
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
| 214 |
213
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
| 215 |
114 122 190 191 149 214
|
itgspliticc |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 216 |
215
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) = ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) ) |
| 217 |
216
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) = ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) ) ) |
| 218 |
107
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ∈ ℂ ) |
| 219 |
215 218
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ∈ ℂ ) |
| 220 |
169 218 219
|
addsub12d |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) ) = ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) ) ) |
| 221 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐹 : ℝ ⟶ ℂ ) |
| 222 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 223 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 224 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 225 |
|
eliccre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 226 |
222 223 224 225
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 227 |
221 226
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 228 |
227 213
|
itgcl |
⊢ ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ∈ ℂ ) |
| 229 |
228
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ∈ ℂ ) |
| 230 |
169 169 229
|
subsub4d |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) − ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) = ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) ) |
| 231 |
230
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) = ( ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) − ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 232 |
231
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) ) = ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) − ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) ) |
| 233 |
169
|
subidd |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) = 0 ) |
| 234 |
233
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) − ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) = ( 0 − ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 235 |
|
df-neg |
⊢ - ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ( 0 − ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 236 |
234 235
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) − ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) = - ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 237 |
236
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) − ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) = ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + - ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 238 |
218 229
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + - ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) = ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 239 |
232 237 238
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) ) = ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 240 |
217 220 239
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) = ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 241 |
188 189 240
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 242 |
241
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) = ( ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) ) |
| 243 |
108 107 228
|
subsubd |
⊢ ( 𝜑 → ( ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) = ( ( ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) + ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 244 |
93
|
oveq2d |
⊢ ( 𝜑 → ( ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) = ( ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 245 |
244 109
|
eqtrd |
⊢ ( 𝜑 → ( ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) = 0 ) |
| 246 |
245
|
oveq1d |
⊢ ( 𝜑 → ( ( ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) + ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) = ( 0 + ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 247 |
228
|
addlidd |
⊢ ( 𝜑 → ( 0 + ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 248 |
243 246 247
|
3eqtrd |
⊢ ( 𝜑 → ( ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 249 |
248
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ( ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 250 |
184 242 249
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑇 < 𝑋 ) → ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 251 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ( 𝐴 − 𝑋 ) ∈ ℝ ) |
| 252 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ( 𝐵 − 𝑋 ) ∈ ℝ ) |
| 253 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → 𝐴 ∈ ℝ ) |
| 254 |
39 1 50
|
ltled |
⊢ ( 𝜑 → ( 𝐴 − 𝑋 ) ≤ 𝐴 ) |
| 255 |
254
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ( 𝐴 − 𝑋 ) ≤ 𝐴 ) |
| 256 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → 𝑋 ∈ ℝ ) |
| 257 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → 𝐵 ∈ ℝ ) |
| 258 |
|
id |
⊢ ( 𝑋 ≤ 𝑇 → 𝑋 ≤ 𝑇 ) |
| 259 |
258 3
|
breqtrdi |
⊢ ( 𝑋 ≤ 𝑇 → 𝑋 ≤ ( 𝐵 − 𝐴 ) ) |
| 260 |
259
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → 𝑋 ≤ ( 𝐵 − 𝐴 ) ) |
| 261 |
256 257 253 260
|
lesubd |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → 𝐴 ≤ ( 𝐵 − 𝑋 ) ) |
| 262 |
251 252 253 255 261
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → 𝐴 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) |
| 263 |
158
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) ∧ 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 264 |
132 102 1 50 78
|
eliood |
⊢ ( 𝜑 → 𝐴 ∈ ( ( 𝐴 − 𝑋 ) (,) +∞ ) ) |
| 265 |
5 3 6 7 8 9 10 11 12 39 264
|
fourierdlem105 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
| 266 |
265
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ( 𝑥 ∈ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
| 267 |
1
|
leidd |
⊢ ( 𝜑 → 𝐴 ≤ 𝐴 ) |
| 268 |
4
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ 𝑋 ) |
| 269 |
2 22
|
subge02d |
⊢ ( 𝜑 → ( 0 ≤ 𝑋 ↔ ( 𝐵 − 𝑋 ) ≤ 𝐵 ) ) |
| 270 |
268 269
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 − 𝑋 ) ≤ 𝐵 ) |
| 271 |
|
iccss |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 ≤ 𝐴 ∧ ( 𝐵 − 𝑋 ) ≤ 𝐵 ) ) → ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 272 |
1 2 267 270 271
|
syl22anc |
⊢ ( 𝜑 → ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 273 |
|
iccmbl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 − 𝑋 ) ∈ ℝ ) → ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ∈ dom vol ) |
| 274 |
1 29 273
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ∈ dom vol ) |
| 275 |
272 274 227 213
|
iblss |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
| 276 |
275
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ( 𝑥 ∈ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
| 277 |
251 252 262 263 266 276
|
itgspliticc |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ( ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ∫ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 278 |
268
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → 0 ≤ 𝑋 ) |
| 279 |
269
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ( 0 ≤ 𝑋 ↔ ( 𝐵 − 𝑋 ) ≤ 𝐵 ) ) |
| 280 |
278 279
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ( 𝐵 − 𝑋 ) ≤ 𝐵 ) |
| 281 |
253 257 252 261 280
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ( 𝐵 − 𝑋 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 282 |
227
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 283 |
2
|
leidd |
⊢ ( 𝜑 → 𝐵 ≤ 𝐵 ) |
| 284 |
283
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → 𝐵 ≤ 𝐵 ) |
| 285 |
|
iccss |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 ≤ ( 𝐵 − 𝑋 ) ∧ 𝐵 ≤ 𝐵 ) ) → ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 286 |
253 257 261 284 285
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 287 |
|
iccmbl |
⊢ ( ( ( 𝐵 − 𝑋 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ∈ dom vol ) |
| 288 |
29 2 287
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ∈ dom vol ) |
| 289 |
288
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ∈ dom vol ) |
| 290 |
213
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
| 291 |
286 289 282 290
|
iblss |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ( 𝑥 ∈ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
| 292 |
253 257 281 282 276 291
|
itgspliticc |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ( ∫ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 293 |
292
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) = ( ( ∫ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 294 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ) → 𝐹 : ℝ ⟶ ℂ ) |
| 295 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ) → 𝐴 ∈ ℝ ) |
| 296 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝐵 − 𝑋 ) ∈ ℝ ) |
| 297 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ) → 𝑥 ∈ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ) |
| 298 |
|
eliccre |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 − 𝑋 ) ∈ ℝ ∧ 𝑥 ∈ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ) → 𝑥 ∈ ℝ ) |
| 299 |
295 296 297 298
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ) → 𝑥 ∈ ℝ ) |
| 300 |
294 299
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 301 |
300 275
|
itgcl |
⊢ ( 𝜑 → ∫ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ∈ ℂ ) |
| 302 |
301 107 107
|
addsubassd |
⊢ ( 𝜑 → ( ( ∫ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) = ( ∫ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) ) |
| 303 |
302
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ( ( ∫ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) = ( ∫ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) ) |
| 304 |
185
|
oveq2d |
⊢ ( 𝜑 → ( ∫ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) = ( ∫ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + 0 ) ) |
| 305 |
301
|
addridd |
⊢ ( 𝜑 → ( ∫ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + 0 ) = ∫ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 306 |
304 305
|
eqtrd |
⊢ ( 𝜑 → ( ∫ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) = ∫ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 307 |
306
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ( ∫ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) = ∫ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 308 |
293 303 307
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ∫ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 309 |
308
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ( ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ∫ ( 𝐴 [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) = ( ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) ) |
| 310 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 311 |
107
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ∈ ℂ ) |
| 312 |
310 311
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ∈ ℂ ) |
| 313 |
282 290
|
itgcl |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ∈ ℂ ) |
| 314 |
312 313 311
|
addsub12d |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ( ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) = ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) ) |
| 315 |
313 312 311
|
addsubassd |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ( ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) = ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) ) |
| 316 |
314 315
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ( ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) = ( ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 317 |
277 309 316
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ( ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 318 |
310
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ( ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) − ∫ ( ( 𝐵 − 𝑋 ) [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) = ( ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) − ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) ) |
| 319 |
313 312
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ( ( ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 + ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) − ∫ ( ( 𝐴 − 𝑋 ) [,] 𝐴 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 320 |
317 318 319
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ≤ 𝑇 ) → ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 321 |
250 320 55 22
|
ltlecasei |
⊢ ( 𝜑 → ∫ ( ( 𝐴 − 𝑋 ) [,] ( 𝐵 − 𝑋 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |