| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem92.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
fourierdlem92.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
fourierdlem92.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 4 |
|
fourierdlem92.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 5 |
|
fourierdlem92.t |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 6 |
|
fourierdlem92.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
| 7 |
|
fourierdlem92.fper |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 8 |
|
fourierdlem92.s |
⊢ 𝑆 = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) |
| 9 |
|
fourierdlem92.h |
⊢ 𝐻 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 + 𝑇 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐵 + 𝑇 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 10 |
|
fourierdlem92.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
| 11 |
|
fourierdlem92.cncf |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 12 |
|
fourierdlem92.r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 13 |
|
fourierdlem92.l |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 14 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑇 ) → 𝐴 ∈ ℝ ) |
| 15 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑇 ) → 𝐵 ∈ ℝ ) |
| 16 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑇 ) → 𝑀 ∈ ℕ ) |
| 17 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑇 ) → 𝑇 ∈ ℝ ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < 𝑇 ) → 0 < 𝑇 ) |
| 19 |
17 18
|
elrpd |
⊢ ( ( 𝜑 ∧ 0 < 𝑇 ) → 𝑇 ∈ ℝ+ ) |
| 20 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑇 ) → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
| 21 |
7
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝑇 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ 𝑖 ) ) |
| 23 |
22
|
oveq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) = ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) |
| 24 |
23
|
cbvmptv |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) ) = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) |
| 25 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑇 ) → 𝐹 : ℝ ⟶ ℂ ) |
| 26 |
11
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝑇 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 27 |
12
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝑇 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 28 |
13
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 < 𝑇 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 29 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 = ( 𝑄 ‘ 𝑖 ) ↔ 𝑥 = ( 𝑄 ‘ 𝑖 ) ) ) |
| 30 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ↔ 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 31 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 32 |
30 31
|
ifbieq2d |
⊢ ( 𝑦 = 𝑥 → if ( 𝑦 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑦 ) ) = if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) |
| 33 |
29 32
|
ifbieq2d |
⊢ ( 𝑦 = 𝑥 → if ( 𝑦 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑦 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑦 ) ) ) = if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 34 |
33
|
cbvmptv |
⊢ ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑦 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑦 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑦 ) ) ) ) = ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 35 |
|
eqid |
⊢ ( 𝑥 ∈ ( ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) ) ‘ 𝑖 ) [,] ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) ) ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑦 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑦 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑦 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) = ( 𝑥 ∈ ( ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) ) ‘ 𝑖 ) [,] ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) ) ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑦 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑦 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑦 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) |
| 36 |
14 15 3 16 19 20 21 24 25 26 27 28 34 35
|
fourierdlem81 |
⊢ ( ( 𝜑 ∧ 0 < 𝑇 ) → ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑇 = 0 ) → 𝑇 = 0 ) |
| 38 |
37
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑇 = 0 ) → ( 𝐴 + 𝑇 ) = ( 𝐴 + 0 ) ) |
| 39 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 = 0 ) → 𝐴 ∈ ℂ ) |
| 41 |
40
|
addridd |
⊢ ( ( 𝜑 ∧ 𝑇 = 0 ) → ( 𝐴 + 0 ) = 𝐴 ) |
| 42 |
38 41
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑇 = 0 ) → ( 𝐴 + 𝑇 ) = 𝐴 ) |
| 43 |
37
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑇 = 0 ) → ( 𝐵 + 𝑇 ) = ( 𝐵 + 0 ) ) |
| 44 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 = 0 ) → 𝐵 ∈ ℂ ) |
| 46 |
45
|
addridd |
⊢ ( ( 𝜑 ∧ 𝑇 = 0 ) → ( 𝐵 + 0 ) = 𝐵 ) |
| 47 |
43 46
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑇 = 0 ) → ( 𝐵 + 𝑇 ) = 𝐵 ) |
| 48 |
42 47
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑇 = 0 ) → ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) = ( 𝐴 [,] 𝐵 ) ) |
| 49 |
48
|
itgeq1d |
⊢ ( ( 𝜑 ∧ 𝑇 = 0 ) → ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 50 |
49
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) ∧ 𝑇 = 0 ) → ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 51 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) ∧ ¬ 𝑇 = 0 ) → 𝜑 ) |
| 52 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) ∧ ¬ 𝑇 = 0 ) → ¬ 𝑇 = 0 ) |
| 53 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) ∧ ¬ 𝑇 = 0 ) → ¬ 0 < 𝑇 ) |
| 54 |
|
ioran |
⊢ ( ¬ ( 𝑇 = 0 ∨ 0 < 𝑇 ) ↔ ( ¬ 𝑇 = 0 ∧ ¬ 0 < 𝑇 ) ) |
| 55 |
52 53 54
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) ∧ ¬ 𝑇 = 0 ) → ¬ ( 𝑇 = 0 ∨ 0 < 𝑇 ) ) |
| 56 |
51 5
|
syl |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) ∧ ¬ 𝑇 = 0 ) → 𝑇 ∈ ℝ ) |
| 57 |
|
0red |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) ∧ ¬ 𝑇 = 0 ) → 0 ∈ ℝ ) |
| 58 |
56 57
|
lttrid |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) ∧ ¬ 𝑇 = 0 ) → ( 𝑇 < 0 ↔ ¬ ( 𝑇 = 0 ∨ 0 < 𝑇 ) ) ) |
| 59 |
55 58
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) ∧ ¬ 𝑇 = 0 ) → 𝑇 < 0 ) |
| 60 |
56
|
lt0neg1d |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) ∧ ¬ 𝑇 = 0 ) → ( 𝑇 < 0 ↔ 0 < - 𝑇 ) ) |
| 61 |
59 60
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) ∧ ¬ 𝑇 = 0 ) → 0 < - 𝑇 ) |
| 62 |
1 5
|
readdcld |
⊢ ( 𝜑 → ( 𝐴 + 𝑇 ) ∈ ℝ ) |
| 63 |
62
|
recnd |
⊢ ( 𝜑 → ( 𝐴 + 𝑇 ) ∈ ℂ ) |
| 64 |
5
|
recnd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 65 |
63 64
|
negsubd |
⊢ ( 𝜑 → ( ( 𝐴 + 𝑇 ) + - 𝑇 ) = ( ( 𝐴 + 𝑇 ) − 𝑇 ) ) |
| 66 |
39 64
|
pncand |
⊢ ( 𝜑 → ( ( 𝐴 + 𝑇 ) − 𝑇 ) = 𝐴 ) |
| 67 |
65 66
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 + 𝑇 ) + - 𝑇 ) = 𝐴 ) |
| 68 |
2 5
|
readdcld |
⊢ ( 𝜑 → ( 𝐵 + 𝑇 ) ∈ ℝ ) |
| 69 |
68
|
recnd |
⊢ ( 𝜑 → ( 𝐵 + 𝑇 ) ∈ ℂ ) |
| 70 |
69 64
|
negsubd |
⊢ ( 𝜑 → ( ( 𝐵 + 𝑇 ) + - 𝑇 ) = ( ( 𝐵 + 𝑇 ) − 𝑇 ) ) |
| 71 |
44 64
|
pncand |
⊢ ( 𝜑 → ( ( 𝐵 + 𝑇 ) − 𝑇 ) = 𝐵 ) |
| 72 |
70 71
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐵 + 𝑇 ) + - 𝑇 ) = 𝐵 ) |
| 73 |
67 72
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐴 + 𝑇 ) + - 𝑇 ) [,] ( ( 𝐵 + 𝑇 ) + - 𝑇 ) ) = ( 𝐴 [,] 𝐵 ) ) |
| 74 |
73
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) = ( ( ( 𝐴 + 𝑇 ) + - 𝑇 ) [,] ( ( 𝐵 + 𝑇 ) + - 𝑇 ) ) ) |
| 75 |
74
|
itgeq1d |
⊢ ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( ( ( 𝐴 + 𝑇 ) + - 𝑇 ) [,] ( ( 𝐵 + 𝑇 ) + - 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 76 |
75
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( ( ( 𝐴 + 𝑇 ) + - 𝑇 ) [,] ( ( 𝐵 + 𝑇 ) + - 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 77 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → 𝐴 ∈ ℝ ) |
| 78 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → 𝑇 ∈ ℝ ) |
| 79 |
77 78
|
readdcld |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → ( 𝐴 + 𝑇 ) ∈ ℝ ) |
| 80 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → 𝐵 ∈ ℝ ) |
| 81 |
80 78
|
readdcld |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → ( 𝐵 + 𝑇 ) ∈ ℝ ) |
| 82 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 + 𝑇 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐵 + 𝑇 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 + 𝑇 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐵 + 𝑇 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 83 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → 𝑀 ∈ ℕ ) |
| 84 |
78
|
renegcld |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → - 𝑇 ∈ ℝ ) |
| 85 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → 0 < - 𝑇 ) |
| 86 |
84 85
|
elrpd |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → - 𝑇 ∈ ℝ+ ) |
| 87 |
3
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 88 |
4 87
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 89 |
6 88
|
mpbid |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 90 |
89
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
| 91 |
|
elmapi |
⊢ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 92 |
90 91
|
syl |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 93 |
92
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 94 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑇 ∈ ℝ ) |
| 95 |
93 94
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ∈ ℝ ) |
| 96 |
95 8
|
fmptd |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 97 |
|
reex |
⊢ ℝ ∈ V |
| 98 |
97
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 99 |
|
ovex |
⊢ ( 0 ... 𝑀 ) ∈ V |
| 100 |
99
|
a1i |
⊢ ( 𝜑 → ( 0 ... 𝑀 ) ∈ V ) |
| 101 |
98 100
|
elmapd |
⊢ ( 𝜑 → ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ↔ 𝑆 : ( 0 ... 𝑀 ) ⟶ ℝ ) ) |
| 102 |
96 101
|
mpbird |
⊢ ( 𝜑 → 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
| 103 |
8
|
a1i |
⊢ ( 𝜑 → 𝑆 = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) ) |
| 104 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 0 ) ) |
| 105 |
104
|
oveq1d |
⊢ ( 𝑖 = 0 → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) = ( ( 𝑄 ‘ 0 ) + 𝑇 ) ) |
| 106 |
105
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) = ( ( 𝑄 ‘ 0 ) + 𝑇 ) ) |
| 107 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 108 |
4
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 109 |
|
0le0 |
⊢ 0 ≤ 0 |
| 110 |
109
|
a1i |
⊢ ( 𝜑 → 0 ≤ 0 ) |
| 111 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
| 112 |
111
|
nn0ge0d |
⊢ ( 𝑀 ∈ ℕ → 0 ≤ 𝑀 ) |
| 113 |
4 112
|
syl |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
| 114 |
107 108 107 110 113
|
elfzd |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) ) |
| 115 |
92 114
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ∈ ℝ ) |
| 116 |
115 5
|
readdcld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) + 𝑇 ) ∈ ℝ ) |
| 117 |
103 106 114 116
|
fvmptd |
⊢ ( 𝜑 → ( 𝑆 ‘ 0 ) = ( ( 𝑄 ‘ 0 ) + 𝑇 ) ) |
| 118 |
|
simprll |
⊢ ( ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 0 ) = 𝐴 ) |
| 119 |
89 118
|
syl |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = 𝐴 ) |
| 120 |
119
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) + 𝑇 ) = ( 𝐴 + 𝑇 ) ) |
| 121 |
117 120
|
eqtrd |
⊢ ( 𝜑 → ( 𝑆 ‘ 0 ) = ( 𝐴 + 𝑇 ) ) |
| 122 |
|
fveq2 |
⊢ ( 𝑖 = 𝑀 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑀 ) ) |
| 123 |
122
|
oveq1d |
⊢ ( 𝑖 = 𝑀 → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) = ( ( 𝑄 ‘ 𝑀 ) + 𝑇 ) ) |
| 124 |
123
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 = 𝑀 ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) = ( ( 𝑄 ‘ 𝑀 ) + 𝑇 ) ) |
| 125 |
4
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 126 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 127 |
125 126
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
| 128 |
|
eluzfz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
| 129 |
127 128
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
| 130 |
92 129
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ℝ ) |
| 131 |
130 5
|
readdcld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑀 ) + 𝑇 ) ∈ ℝ ) |
| 132 |
103 124 129 131
|
fvmptd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑀 ) = ( ( 𝑄 ‘ 𝑀 ) + 𝑇 ) ) |
| 133 |
|
simprlr |
⊢ ( ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = 𝐴 ∧ ( 𝑄 ‘ 𝑀 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑀 ) = 𝐵 ) |
| 134 |
89 133
|
syl |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = 𝐵 ) |
| 135 |
134
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑀 ) + 𝑇 ) = ( 𝐵 + 𝑇 ) ) |
| 136 |
132 135
|
eqtrd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑀 ) = ( 𝐵 + 𝑇 ) ) |
| 137 |
121 136
|
jca |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 0 ) = ( 𝐴 + 𝑇 ) ∧ ( 𝑆 ‘ 𝑀 ) = ( 𝐵 + 𝑇 ) ) ) |
| 138 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 139 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 140 |
139
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 141 |
138 140
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 142 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 143 |
142
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 144 |
138 143
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 145 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑇 ∈ ℝ ) |
| 146 |
89
|
simprrd |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 147 |
146
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 148 |
141 144 145 147
|
ltadd1dd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) |
| 149 |
141 145
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ∈ ℝ ) |
| 150 |
8
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ∈ ℝ ) → ( 𝑆 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) |
| 151 |
140 149 150
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) |
| 152 |
8 24
|
eqtr4i |
⊢ 𝑆 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) ) |
| 153 |
152
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑆 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) ) ) |
| 154 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 155 |
154
|
oveq1d |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) = ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) |
| 156 |
155
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 = ( 𝑖 + 1 ) ) → ( ( 𝑄 ‘ 𝑗 ) + 𝑇 ) = ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) |
| 157 |
144 145
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ∈ ℝ ) |
| 158 |
153 156 143 157
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 ‘ ( 𝑖 + 1 ) ) = ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) |
| 159 |
148 151 158
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) |
| 160 |
159
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) |
| 161 |
102 137 160
|
jca32 |
⊢ ( 𝜑 → ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑆 ‘ 0 ) = ( 𝐴 + 𝑇 ) ∧ ( 𝑆 ‘ 𝑀 ) = ( 𝐵 + 𝑇 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 162 |
9
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑆 ∈ ( 𝐻 ‘ 𝑀 ) ↔ ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑆 ‘ 0 ) = ( 𝐴 + 𝑇 ) ∧ ( 𝑆 ‘ 𝑀 ) = ( 𝐵 + 𝑇 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 163 |
4 162
|
syl |
⊢ ( 𝜑 → ( 𝑆 ∈ ( 𝐻 ‘ 𝑀 ) ↔ ( 𝑆 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑆 ‘ 0 ) = ( 𝐴 + 𝑇 ) ∧ ( 𝑆 ‘ 𝑀 ) = ( 𝐵 + 𝑇 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑆 ‘ 𝑖 ) < ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 164 |
161 163
|
mpbird |
⊢ ( 𝜑 → 𝑆 ∈ ( 𝐻 ‘ 𝑀 ) ) |
| 165 |
9
|
fveq1i |
⊢ ( 𝐻 ‘ 𝑀 ) = ( ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 + 𝑇 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐵 + 𝑇 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) ‘ 𝑀 ) |
| 166 |
164 165
|
eleqtrdi |
⊢ ( 𝜑 → 𝑆 ∈ ( ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 + 𝑇 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐵 + 𝑇 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) ‘ 𝑀 ) ) |
| 167 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → 𝑆 ∈ ( ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( 𝐴 + 𝑇 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( 𝐵 + 𝑇 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) ‘ 𝑀 ) ) |
| 168 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) ∈ ℝ ) |
| 169 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐵 + 𝑇 ) ∈ ℝ ) |
| 170 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) |
| 171 |
|
eliccre |
⊢ ( ( ( 𝐴 + 𝑇 ) ∈ ℝ ∧ ( 𝐵 + 𝑇 ) ∈ ℝ ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ ℝ ) |
| 172 |
168 169 170 171
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ ℝ ) |
| 173 |
172
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ∈ ℂ ) |
| 174 |
64
|
negcld |
⊢ ( 𝜑 → - 𝑇 ∈ ℂ ) |
| 175 |
174
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → - 𝑇 ∈ ℂ ) |
| 176 |
173 175
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 + - 𝑇 ) ∈ ℂ ) |
| 177 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝜑 ) |
| 178 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐴 ∈ ℝ ) |
| 179 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐵 ∈ ℝ ) |
| 180 |
5
|
renegcld |
⊢ ( 𝜑 → - 𝑇 ∈ ℝ ) |
| 181 |
180
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → - 𝑇 ∈ ℝ ) |
| 182 |
172 181
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 + - 𝑇 ) ∈ ℝ ) |
| 183 |
65 66
|
eqtr2d |
⊢ ( 𝜑 → 𝐴 = ( ( 𝐴 + 𝑇 ) + - 𝑇 ) ) |
| 184 |
183
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐴 = ( ( 𝐴 + 𝑇 ) + - 𝑇 ) ) |
| 185 |
168
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) ∈ ℝ* ) |
| 186 |
169
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐵 + 𝑇 ) ∈ ℝ* ) |
| 187 |
|
iccgelb |
⊢ ( ( ( 𝐴 + 𝑇 ) ∈ ℝ* ∧ ( 𝐵 + 𝑇 ) ∈ ℝ* ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) ≤ 𝑥 ) |
| 188 |
185 186 170 187
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) ≤ 𝑥 ) |
| 189 |
168 172 181 188
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( ( 𝐴 + 𝑇 ) + - 𝑇 ) ≤ ( 𝑥 + - 𝑇 ) ) |
| 190 |
184 189
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝐴 ≤ ( 𝑥 + - 𝑇 ) ) |
| 191 |
|
iccleub |
⊢ ( ( ( 𝐴 + 𝑇 ) ∈ ℝ* ∧ ( 𝐵 + 𝑇 ) ∈ ℝ* ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ≤ ( 𝐵 + 𝑇 ) ) |
| 192 |
185 186 170 191
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑥 ≤ ( 𝐵 + 𝑇 ) ) |
| 193 |
172 169 181 192
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 + - 𝑇 ) ≤ ( ( 𝐵 + 𝑇 ) + - 𝑇 ) ) |
| 194 |
169
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐵 + 𝑇 ) ∈ ℂ ) |
| 195 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → 𝑇 ∈ ℂ ) |
| 196 |
194 195
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( ( 𝐵 + 𝑇 ) + - 𝑇 ) = ( ( 𝐵 + 𝑇 ) − 𝑇 ) ) |
| 197 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( ( 𝐵 + 𝑇 ) − 𝑇 ) = 𝐵 ) |
| 198 |
196 197
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( ( 𝐵 + 𝑇 ) + - 𝑇 ) = 𝐵 ) |
| 199 |
193 198
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 + - 𝑇 ) ≤ 𝐵 ) |
| 200 |
178 179 182 190 199
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 + - 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 201 |
177 200
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝜑 ∧ ( 𝑥 + - 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 202 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝑥 + - 𝑇 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 + - 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 203 |
202
|
anbi2d |
⊢ ( 𝑦 = ( 𝑥 + - 𝑇 ) → ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ↔ ( 𝜑 ∧ ( 𝑥 + - 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 204 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑥 + - 𝑇 ) → ( 𝑦 + 𝑇 ) = ( ( 𝑥 + - 𝑇 ) + 𝑇 ) ) |
| 205 |
204
|
fveq2d |
⊢ ( 𝑦 = ( 𝑥 + - 𝑇 ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ ( ( 𝑥 + - 𝑇 ) + 𝑇 ) ) ) |
| 206 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑥 + - 𝑇 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑥 + - 𝑇 ) ) ) |
| 207 |
205 206
|
eqeq12d |
⊢ ( 𝑦 = ( 𝑥 + - 𝑇 ) → ( ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ ( ( 𝑥 + - 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 + - 𝑇 ) ) ) ) |
| 208 |
203 207
|
imbi12d |
⊢ ( 𝑦 = ( 𝑥 + - 𝑇 ) → ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝜑 ∧ ( 𝑥 + - 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( ( 𝑥 + - 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 + - 𝑇 ) ) ) ) ) |
| 209 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 210 |
209
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ↔ ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 211 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 + 𝑇 ) = ( 𝑦 + 𝑇 ) ) |
| 212 |
211
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) ) |
| 213 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 214 |
212 213
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) ) |
| 215 |
210 214
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 216 |
215 7
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
| 217 |
208 216
|
vtoclg |
⊢ ( ( 𝑥 + - 𝑇 ) ∈ ℂ → ( ( 𝜑 ∧ ( 𝑥 + - 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( ( 𝑥 + - 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 + - 𝑇 ) ) ) ) |
| 218 |
176 201 217
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐹 ‘ ( ( 𝑥 + - 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 + - 𝑇 ) ) ) |
| 219 |
173 195
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝑥 + - 𝑇 ) = ( 𝑥 − 𝑇 ) ) |
| 220 |
219
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( ( 𝑥 + - 𝑇 ) + 𝑇 ) = ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) |
| 221 |
173 195
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( ( 𝑥 − 𝑇 ) + 𝑇 ) = 𝑥 ) |
| 222 |
220 221
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( ( 𝑥 + - 𝑇 ) + 𝑇 ) = 𝑥 ) |
| 223 |
222
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐹 ‘ ( ( 𝑥 + - 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 224 |
218 223
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐹 ‘ ( 𝑥 + - 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 225 |
224
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 < - 𝑇 ) ∧ 𝑥 ∈ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ) → ( 𝐹 ‘ ( 𝑥 + - 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 226 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑆 ‘ 𝑗 ) = ( 𝑆 ‘ 𝑖 ) ) |
| 227 |
226
|
oveq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑆 ‘ 𝑗 ) + - 𝑇 ) = ( ( 𝑆 ‘ 𝑖 ) + - 𝑇 ) ) |
| 228 |
227
|
cbvmptv |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑆 ‘ 𝑗 ) + - 𝑇 ) ) = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑆 ‘ 𝑖 ) + - 𝑇 ) ) |
| 229 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → 𝐹 : ℝ ⟶ ℂ ) |
| 230 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐹 : ℝ ⟶ ℂ ) |
| 231 |
|
ioossre |
⊢ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ |
| 232 |
231
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
| 233 |
230 232
|
feqresmpt |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 234 |
151 158
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) = ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) |
| 235 |
141 144 145
|
iooshift |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) = { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) |
| 236 |
234 235
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) = { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) |
| 237 |
236
|
mpteq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 238 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → 𝜑 ) |
| 239 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 240 |
235
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ↔ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) ) |
| 241 |
240
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) |
| 242 |
141
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
| 243 |
242
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
| 244 |
144
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
| 245 |
244
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
| 246 |
|
elioore |
⊢ ( 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) → 𝑥 ∈ ℝ ) |
| 247 |
246
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝑥 ∈ ℝ ) |
| 248 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝑇 ∈ ℝ ) |
| 249 |
247 248
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ∈ ℝ ) |
| 250 |
249
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ∈ ℝ ) |
| 251 |
141
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℂ ) |
| 252 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑇 ∈ ℂ ) |
| 253 |
251 252
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) − 𝑇 ) = ( 𝑄 ‘ 𝑖 ) ) |
| 254 |
253
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) = ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) − 𝑇 ) ) |
| 255 |
254
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑄 ‘ 𝑖 ) = ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) − 𝑇 ) ) |
| 256 |
149
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ∈ ℝ ) |
| 257 |
247
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝑥 ∈ ℝ ) |
| 258 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝑇 ∈ ℝ ) |
| 259 |
149
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ∈ ℝ* ) |
| 260 |
259
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ∈ ℝ* ) |
| 261 |
157
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ∈ ℝ* ) |
| 262 |
261
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ∈ ℝ* ) |
| 263 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) |
| 264 |
|
ioogtlb |
⊢ ( ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ∈ ℝ* ∧ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ∈ ℝ* ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) < 𝑥 ) |
| 265 |
260 262 263 264
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) < 𝑥 ) |
| 266 |
256 257 258 265
|
ltsub1dd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) − 𝑇 ) < ( 𝑥 − 𝑇 ) ) |
| 267 |
255 266
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑥 − 𝑇 ) ) |
| 268 |
157
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ∈ ℝ ) |
| 269 |
|
iooltub |
⊢ ( ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ∈ ℝ* ∧ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ∈ ℝ* ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝑥 < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) |
| 270 |
260 262 263 269
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝑥 < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) |
| 271 |
257 268 258 270
|
ltsub1dd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) < ( ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) − 𝑇 ) ) |
| 272 |
144
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℂ ) |
| 273 |
272 252
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 274 |
273
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) − 𝑇 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 275 |
271 274
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 276 |
243 245 250 267 275
|
eliood |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 277 |
238 239 241 276
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → ( 𝑥 − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 278 |
|
fvres |
⊢ ( ( 𝑥 − 𝑇 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) |
| 279 |
277 278
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) |
| 280 |
238 241 249
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → ( 𝑥 − 𝑇 ) ∈ ℝ ) |
| 281 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝐴 ∈ ℝ ) |
| 282 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝐵 ∈ ℝ ) |
| 283 |
66
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( ( 𝐴 + 𝑇 ) − 𝑇 ) ) |
| 284 |
283
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝐴 = ( ( 𝐴 + 𝑇 ) − 𝑇 ) ) |
| 285 |
62
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) ∈ ℝ ) |
| 286 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐴 ∈ ℝ ) |
| 287 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 288 |
287
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐴 ∈ ℝ* ) |
| 289 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 290 |
289
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐵 ∈ ℝ* ) |
| 291 |
3 4 6
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
| 292 |
291
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
| 293 |
292 140
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 294 |
|
iccgelb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝑄 ‘ 𝑖 ) ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ ( 𝑄 ‘ 𝑖 ) ) |
| 295 |
288 290 293 294
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐴 ≤ ( 𝑄 ‘ 𝑖 ) ) |
| 296 |
286 141 145 295
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐴 + 𝑇 ) ≤ ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) |
| 297 |
296
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) ≤ ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) |
| 298 |
285 256 257 297 265
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝐴 + 𝑇 ) < 𝑥 ) |
| 299 |
285 257 258 298
|
ltsub1dd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( ( 𝐴 + 𝑇 ) − 𝑇 ) < ( 𝑥 − 𝑇 ) ) |
| 300 |
284 299
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝐴 < ( 𝑥 − 𝑇 ) ) |
| 301 |
281 250 300
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → 𝐴 ≤ ( 𝑥 − 𝑇 ) ) |
| 302 |
144
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 303 |
292 143
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 304 |
|
iccleub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ≤ 𝐵 ) |
| 305 |
288 290 303 304
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ≤ 𝐵 ) |
| 306 |
305
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ≤ 𝐵 ) |
| 307 |
250 302 282 275 306
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) < 𝐵 ) |
| 308 |
250 282 307
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ≤ 𝐵 ) |
| 309 |
281 282 250 301 308
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∧ 𝑥 ∈ ( ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) → ( 𝑥 − 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 310 |
238 239 241 309
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → ( 𝑥 − 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 311 |
238 310
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → ( 𝜑 ∧ ( 𝑥 − 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 312 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝑥 − 𝑇 ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 − 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 313 |
312
|
anbi2d |
⊢ ( 𝑦 = ( 𝑥 − 𝑇 ) → ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) ↔ ( 𝜑 ∧ ( 𝑥 − 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 314 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑥 − 𝑇 ) → ( 𝑦 + 𝑇 ) = ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) |
| 315 |
314
|
fveq2d |
⊢ ( 𝑦 = ( 𝑥 − 𝑇 ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) ) |
| 316 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑥 − 𝑇 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) |
| 317 |
315 316
|
eqeq12d |
⊢ ( 𝑦 = ( 𝑥 − 𝑇 ) → ( ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) ) |
| 318 |
313 317
|
imbi12d |
⊢ ( 𝑦 = ( 𝑥 − 𝑇 ) → ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝜑 ∧ ( 𝑥 − 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) ) ) |
| 319 |
318 216
|
vtoclg |
⊢ ( ( 𝑥 − 𝑇 ) ∈ ℝ → ( ( 𝜑 ∧ ( 𝑥 − 𝑇 ) ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) ) |
| 320 |
280 311 319
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → ( 𝐹 ‘ ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) |
| 321 |
241 246
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → 𝑥 ∈ ℝ ) |
| 322 |
|
recn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) |
| 323 |
322
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
| 324 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑇 ∈ ℂ ) |
| 325 |
323 324
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 − 𝑇 ) + 𝑇 ) = 𝑥 ) |
| 326 |
325
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 327 |
238 321 326
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → ( 𝐹 ‘ ( ( 𝑥 − 𝑇 ) + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 328 |
279 320 327
|
3eqtr2rd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ) → ( 𝐹 ‘ 𝑥 ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) |
| 329 |
328
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) ) |
| 330 |
233 237 329
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) ) |
| 331 |
|
ioosscn |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ |
| 332 |
331
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ ) |
| 333 |
|
eqeq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 = ( 𝑧 + 𝑇 ) ↔ 𝑥 = ( 𝑧 + 𝑇 ) ) ) |
| 334 |
333
|
rexbidv |
⊢ ( 𝑤 = 𝑥 → ( ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑧 + 𝑇 ) ) ) |
| 335 |
|
oveq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 + 𝑇 ) = ( 𝑦 + 𝑇 ) ) |
| 336 |
335
|
eqeq2d |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 = ( 𝑧 + 𝑇 ) ↔ 𝑥 = ( 𝑦 + 𝑇 ) ) ) |
| 337 |
336
|
cbvrexvw |
⊢ ( ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑦 + 𝑇 ) ) |
| 338 |
334 337
|
bitrdi |
⊢ ( 𝑤 = 𝑥 → ( ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑦 + 𝑇 ) ) ) |
| 339 |
338
|
cbvrabv |
⊢ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } = { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑦 + 𝑇 ) } |
| 340 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) = ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) |
| 341 |
332 252 339 11 340
|
cncfshift |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) ∈ ( { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } –cn→ ℂ ) ) |
| 342 |
236
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } = ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
| 343 |
342
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } –cn→ ℂ ) = ( ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 344 |
341 343
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑥 − 𝑇 ) ) ) ∈ ( ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 345 |
330 344
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 346 |
345
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 < - 𝑇 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 347 |
|
ffdm |
⊢ ( 𝐹 : ℝ ⟶ ℂ → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℝ ) ) |
| 348 |
10 347
|
syl |
⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℝ ) ) |
| 349 |
348
|
simpld |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 350 |
349
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 351 |
|
ioossre |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ |
| 352 |
|
fdm |
⊢ ( 𝐹 : ℝ ⟶ ℂ → dom 𝐹 = ℝ ) |
| 353 |
230 352
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → dom 𝐹 = ℝ ) |
| 354 |
351 353
|
sseqtrrid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom 𝐹 ) |
| 355 |
339
|
eqcomi |
⊢ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑦 + 𝑇 ) } = { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } |
| 356 |
232 342 353
|
3sstr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑤 = ( 𝑧 + 𝑇 ) } ⊆ dom 𝐹 ) |
| 357 |
339 356
|
eqsstrrid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑦 + 𝑇 ) } ⊆ dom 𝐹 ) |
| 358 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝜑 ) |
| 359 |
358 287
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝐴 ∈ ℝ* ) |
| 360 |
358 289
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝐵 ∈ ℝ* ) |
| 361 |
358 291
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
| 362 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 363 |
|
ioossicc |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 364 |
363
|
sseli |
⊢ ( 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 365 |
364
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 366 |
359 360 361 362 365
|
fourierdlem1 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 367 |
|
eleq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
| 368 |
367
|
anbi2d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ↔ ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 369 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 + 𝑇 ) = ( 𝑧 + 𝑇 ) ) |
| 370 |
369
|
fveq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑧 + 𝑇 ) ) ) |
| 371 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 372 |
370 371
|
eqeq12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ ( 𝑧 + 𝑇 ) ) = ( 𝐹 ‘ 𝑧 ) ) ) |
| 373 |
368 372
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑧 + 𝑇 ) ) = ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 374 |
373 7
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ ( 𝑧 + 𝑇 ) ) = ( 𝐹 ‘ 𝑧 ) ) |
| 375 |
358 366 374
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑧 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑧 + 𝑇 ) ) = ( 𝐹 ‘ 𝑧 ) ) |
| 376 |
350 332 354 252 355 357 375 12
|
limcperiod |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑦 + 𝑇 ) } ) limℂ ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) ) |
| 377 |
355 342
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑦 + 𝑇 ) } = ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
| 378 |
377
|
reseq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑦 + 𝑇 ) } ) = ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 379 |
151
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) = ( 𝑆 ‘ 𝑖 ) ) |
| 380 |
378 379
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑦 + 𝑇 ) } ) limℂ ( ( 𝑄 ‘ 𝑖 ) + 𝑇 ) ) = ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑆 ‘ 𝑖 ) ) ) |
| 381 |
376 380
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑆 ‘ 𝑖 ) ) ) |
| 382 |
381
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 < - 𝑇 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑆 ‘ 𝑖 ) ) ) |
| 383 |
350 332 354 252 355 357 375 13
|
limcperiod |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑦 + 𝑇 ) } ) limℂ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) ) |
| 384 |
158
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) |
| 385 |
378 384
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑥 = ( 𝑦 + 𝑇 ) } ) limℂ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) + 𝑇 ) ) = ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
| 386 |
383 385
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
| 387 |
386
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 0 < - 𝑇 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
| 388 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 = ( 𝑆 ‘ 𝑖 ) ↔ 𝑥 = ( 𝑆 ‘ 𝑖 ) ) ) |
| 389 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ↔ 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ) |
| 390 |
389 31
|
ifbieq2d |
⊢ ( 𝑦 = 𝑥 → if ( 𝑦 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑦 ) ) = if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) |
| 391 |
388 390
|
ifbieq2d |
⊢ ( 𝑦 = 𝑥 → if ( 𝑦 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑦 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑦 ) ) ) = if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 392 |
391
|
cbvmptv |
⊢ ( 𝑦 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑦 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑦 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑦 ) ) ) ) = ( 𝑥 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 393 |
|
eqid |
⊢ ( 𝑥 ∈ ( ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑆 ‘ 𝑗 ) + - 𝑇 ) ) ‘ 𝑖 ) [,] ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑆 ‘ 𝑗 ) + - 𝑇 ) ) ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑦 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑦 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑦 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑦 ) ) ) ) ‘ ( 𝑥 − - 𝑇 ) ) ) = ( 𝑥 ∈ ( ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑆 ‘ 𝑗 ) + - 𝑇 ) ) ‘ 𝑖 ) [,] ( ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑆 ‘ 𝑗 ) + - 𝑇 ) ) ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝑦 ∈ ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑦 = ( 𝑆 ‘ 𝑖 ) , 𝑅 , if ( 𝑦 = ( 𝑆 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( 𝐹 ‘ 𝑦 ) ) ) ) ‘ ( 𝑥 − - 𝑇 ) ) ) |
| 394 |
79 81 82 83 86 167 225 228 229 346 382 387 392 393
|
fourierdlem81 |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → ∫ ( ( ( 𝐴 + 𝑇 ) + - 𝑇 ) [,] ( ( 𝐵 + 𝑇 ) + - 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 395 |
76 394
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 0 < - 𝑇 ) → ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 396 |
51 61 395
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) ∧ ¬ 𝑇 = 0 ) → ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 397 |
50 396
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ¬ 0 < 𝑇 ) → ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |
| 398 |
36 397
|
pm2.61dan |
⊢ ( 𝜑 → ∫ ( ( 𝐴 + 𝑇 ) [,] ( 𝐵 + 𝑇 ) ) ( 𝐹 ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 ) d 𝑥 ) |