| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem92.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | fourierdlem92.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | fourierdlem92.p | ⊢ 𝑃  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  𝐴  ∧  ( 𝑝 ‘ 𝑚 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 4 |  | fourierdlem92.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 5 |  | fourierdlem92.t | ⊢ ( 𝜑  →  𝑇  ∈  ℝ ) | 
						
							| 6 |  | fourierdlem92.q | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 7 |  | fourierdlem92.fper | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 8 |  | fourierdlem92.s | ⊢ 𝑆  =  ( 𝑖  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) ) | 
						
							| 9 |  | fourierdlem92.h | ⊢ 𝐻  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  +  𝑇 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐵  +  𝑇 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 10 |  | fourierdlem92.f | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 11 |  | fourierdlem92.cncf | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 12 |  | fourierdlem92.r | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 13 |  | fourierdlem92.l | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 14 | 1 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝑇 )  →  𝐴  ∈  ℝ ) | 
						
							| 15 | 2 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝑇 )  →  𝐵  ∈  ℝ ) | 
						
							| 16 | 4 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝑇 )  →  𝑀  ∈  ℕ ) | 
						
							| 17 | 5 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝑇 )  →  𝑇  ∈  ℝ ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝜑  ∧  0  <  𝑇 )  →  0  <  𝑇 ) | 
						
							| 19 | 17 18 | elrpd | ⊢ ( ( 𝜑  ∧  0  <  𝑇 )  →  𝑇  ∈  ℝ+ ) | 
						
							| 20 | 6 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝑇 )  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 21 | 7 | adantlr | ⊢ ( ( ( 𝜑  ∧  0  <  𝑇 )  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 23 | 22 | oveq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝑄 ‘ 𝑗 )  +  𝑇 )  =  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) ) | 
						
							| 24 | 23 | cbvmptv | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑗 )  +  𝑇 ) )  =  ( 𝑖  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) ) | 
						
							| 25 | 10 | adantr | ⊢ ( ( 𝜑  ∧  0  <  𝑇 )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 26 | 11 | adantlr | ⊢ ( ( ( 𝜑  ∧  0  <  𝑇 )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 27 | 12 | adantlr | ⊢ ( ( ( 𝜑  ∧  0  <  𝑇 )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 28 | 13 | adantlr | ⊢ ( ( ( 𝜑  ∧  0  <  𝑇 )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 29 |  | eqeq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  =  ( 𝑄 ‘ 𝑖 )  ↔  𝑥  =  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 30 |  | eqeq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  =  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ↔  𝑥  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 31 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 32 | 30 31 | ifbieq2d | ⊢ ( 𝑦  =  𝑥  →  if ( 𝑦  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑦 ) )  =  if ( 𝑥  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 33 | 29 32 | ifbieq2d | ⊢ ( 𝑦  =  𝑥  →  if ( 𝑦  =  ( 𝑄 ‘ 𝑖 ) ,  𝑅 ,  if ( 𝑦  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑦 ) ) )  =  if ( 𝑥  =  ( 𝑄 ‘ 𝑖 ) ,  𝑅 ,  if ( 𝑥  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 34 | 33 | cbvmptv | ⊢ ( 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  if ( 𝑦  =  ( 𝑄 ‘ 𝑖 ) ,  𝑅 ,  if ( 𝑦  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑦 ) ) ) )  =  ( 𝑥  ∈  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  if ( 𝑥  =  ( 𝑄 ‘ 𝑖 ) ,  𝑅 ,  if ( 𝑥  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 35 |  | eqid | ⊢ ( 𝑥  ∈  ( ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑗 )  +  𝑇 ) ) ‘ 𝑖 ) [,] ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑗 )  +  𝑇 ) ) ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  if ( 𝑦  =  ( 𝑄 ‘ 𝑖 ) ,  𝑅 ,  if ( 𝑦  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑦 ) ) ) ) ‘ ( 𝑥  −  𝑇 ) ) )  =  ( 𝑥  ∈  ( ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑗 )  +  𝑇 ) ) ‘ 𝑖 ) [,] ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑗 )  +  𝑇 ) ) ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ↦  if ( 𝑦  =  ( 𝑄 ‘ 𝑖 ) ,  𝑅 ,  if ( 𝑦  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑦 ) ) ) ) ‘ ( 𝑥  −  𝑇 ) ) ) | 
						
							| 36 | 14 15 3 16 19 20 21 24 25 26 27 28 34 35 | fourierdlem81 | ⊢ ( ( 𝜑  ∧  0  <  𝑇 )  →  ∫ ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 37 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑇  =  0 )  →  𝑇  =  0 ) | 
						
							| 38 | 37 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑇  =  0 )  →  ( 𝐴  +  𝑇 )  =  ( 𝐴  +  0 ) ) | 
						
							| 39 | 1 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( 𝜑  ∧  𝑇  =  0 )  →  𝐴  ∈  ℂ ) | 
						
							| 41 | 40 | addridd | ⊢ ( ( 𝜑  ∧  𝑇  =  0 )  →  ( 𝐴  +  0 )  =  𝐴 ) | 
						
							| 42 | 38 41 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑇  =  0 )  →  ( 𝐴  +  𝑇 )  =  𝐴 ) | 
						
							| 43 | 37 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑇  =  0 )  →  ( 𝐵  +  𝑇 )  =  ( 𝐵  +  0 ) ) | 
						
							| 44 | 2 | recnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝜑  ∧  𝑇  =  0 )  →  𝐵  ∈  ℂ ) | 
						
							| 46 | 45 | addridd | ⊢ ( ( 𝜑  ∧  𝑇  =  0 )  →  ( 𝐵  +  0 )  =  𝐵 ) | 
						
							| 47 | 43 46 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑇  =  0 )  →  ( 𝐵  +  𝑇 )  =  𝐵 ) | 
						
							| 48 | 42 47 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑇  =  0 )  →  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) )  =  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 49 | 48 | itgeq1d | ⊢ ( ( 𝜑  ∧  𝑇  =  0 )  →  ∫ ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 50 | 49 | adantlr | ⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑇 )  ∧  𝑇  =  0 )  →  ∫ ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 51 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑇 )  ∧  ¬  𝑇  =  0 )  →  𝜑 ) | 
						
							| 52 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑇 )  ∧  ¬  𝑇  =  0 )  →  ¬  𝑇  =  0 ) | 
						
							| 53 |  | simplr | ⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑇 )  ∧  ¬  𝑇  =  0 )  →  ¬  0  <  𝑇 ) | 
						
							| 54 |  | ioran | ⊢ ( ¬  ( 𝑇  =  0  ∨  0  <  𝑇 )  ↔  ( ¬  𝑇  =  0  ∧  ¬  0  <  𝑇 ) ) | 
						
							| 55 | 52 53 54 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑇 )  ∧  ¬  𝑇  =  0 )  →  ¬  ( 𝑇  =  0  ∨  0  <  𝑇 ) ) | 
						
							| 56 | 51 5 | syl | ⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑇 )  ∧  ¬  𝑇  =  0 )  →  𝑇  ∈  ℝ ) | 
						
							| 57 |  | 0red | ⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑇 )  ∧  ¬  𝑇  =  0 )  →  0  ∈  ℝ ) | 
						
							| 58 | 56 57 | lttrid | ⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑇 )  ∧  ¬  𝑇  =  0 )  →  ( 𝑇  <  0  ↔  ¬  ( 𝑇  =  0  ∨  0  <  𝑇 ) ) ) | 
						
							| 59 | 55 58 | mpbird | ⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑇 )  ∧  ¬  𝑇  =  0 )  →  𝑇  <  0 ) | 
						
							| 60 | 56 | lt0neg1d | ⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑇 )  ∧  ¬  𝑇  =  0 )  →  ( 𝑇  <  0  ↔  0  <  - 𝑇 ) ) | 
						
							| 61 | 59 60 | mpbid | ⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑇 )  ∧  ¬  𝑇  =  0 )  →  0  <  - 𝑇 ) | 
						
							| 62 | 1 5 | readdcld | ⊢ ( 𝜑  →  ( 𝐴  +  𝑇 )  ∈  ℝ ) | 
						
							| 63 | 62 | recnd | ⊢ ( 𝜑  →  ( 𝐴  +  𝑇 )  ∈  ℂ ) | 
						
							| 64 | 5 | recnd | ⊢ ( 𝜑  →  𝑇  ∈  ℂ ) | 
						
							| 65 | 63 64 | negsubd | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝑇 )  +  - 𝑇 )  =  ( ( 𝐴  +  𝑇 )  −  𝑇 ) ) | 
						
							| 66 | 39 64 | pncand | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝑇 )  −  𝑇 )  =  𝐴 ) | 
						
							| 67 | 65 66 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝑇 )  +  - 𝑇 )  =  𝐴 ) | 
						
							| 68 | 2 5 | readdcld | ⊢ ( 𝜑  →  ( 𝐵  +  𝑇 )  ∈  ℝ ) | 
						
							| 69 | 68 | recnd | ⊢ ( 𝜑  →  ( 𝐵  +  𝑇 )  ∈  ℂ ) | 
						
							| 70 | 69 64 | negsubd | ⊢ ( 𝜑  →  ( ( 𝐵  +  𝑇 )  +  - 𝑇 )  =  ( ( 𝐵  +  𝑇 )  −  𝑇 ) ) | 
						
							| 71 | 44 64 | pncand | ⊢ ( 𝜑  →  ( ( 𝐵  +  𝑇 )  −  𝑇 )  =  𝐵 ) | 
						
							| 72 | 70 71 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐵  +  𝑇 )  +  - 𝑇 )  =  𝐵 ) | 
						
							| 73 | 67 72 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 𝐴  +  𝑇 )  +  - 𝑇 ) [,] ( ( 𝐵  +  𝑇 )  +  - 𝑇 ) )  =  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 74 | 73 | eqcomd | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  =  ( ( ( 𝐴  +  𝑇 )  +  - 𝑇 ) [,] ( ( 𝐵  +  𝑇 )  +  - 𝑇 ) ) ) | 
						
							| 75 | 74 | itgeq1d | ⊢ ( 𝜑  →  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( ( ( 𝐴  +  𝑇 )  +  - 𝑇 ) [,] ( ( 𝐵  +  𝑇 )  +  - 𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( ( ( 𝐴  +  𝑇 )  +  - 𝑇 ) [,] ( ( 𝐵  +  𝑇 )  +  - 𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 77 | 1 | adantr | ⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  𝐴  ∈  ℝ ) | 
						
							| 78 | 5 | adantr | ⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  𝑇  ∈  ℝ ) | 
						
							| 79 | 77 78 | readdcld | ⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  ( 𝐴  +  𝑇 )  ∈  ℝ ) | 
						
							| 80 | 2 | adantr | ⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  𝐵  ∈  ℝ ) | 
						
							| 81 | 80 78 | readdcld | ⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  ( 𝐵  +  𝑇 )  ∈  ℝ ) | 
						
							| 82 |  | eqid | ⊢ ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  +  𝑇 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐵  +  𝑇 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } )  =  ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  +  𝑇 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐵  +  𝑇 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 83 | 4 | adantr | ⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  𝑀  ∈  ℕ ) | 
						
							| 84 | 78 | renegcld | ⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  - 𝑇  ∈  ℝ ) | 
						
							| 85 |  | simpr | ⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  0  <  - 𝑇 ) | 
						
							| 86 | 84 85 | elrpd | ⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  - 𝑇  ∈  ℝ+ ) | 
						
							| 87 | 3 | fourierdlem2 | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 88 | 4 87 | syl | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 89 | 6 88 | mpbid | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 90 | 89 | simpld | ⊢ ( 𝜑  →  𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 91 |  | elmapi | ⊢ ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 92 | 90 91 | syl | ⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 93 | 92 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 94 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  𝑇  ∈  ℝ ) | 
						
							| 95 | 93 94 | readdcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  ∈  ℝ ) | 
						
							| 96 | 95 8 | fmptd | ⊢ ( 𝜑  →  𝑆 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 97 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 98 | 97 | a1i | ⊢ ( 𝜑  →  ℝ  ∈  V ) | 
						
							| 99 |  | ovex | ⊢ ( 0 ... 𝑀 )  ∈  V | 
						
							| 100 | 99 | a1i | ⊢ ( 𝜑  →  ( 0 ... 𝑀 )  ∈  V ) | 
						
							| 101 | 98 100 | elmapd | ⊢ ( 𝜑  →  ( 𝑆  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ↔  𝑆 : ( 0 ... 𝑀 ) ⟶ ℝ ) ) | 
						
							| 102 | 96 101 | mpbird | ⊢ ( 𝜑  →  𝑆  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 103 | 8 | a1i | ⊢ ( 𝜑  →  𝑆  =  ( 𝑖  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) ) ) | 
						
							| 104 |  | fveq2 | ⊢ ( 𝑖  =  0  →  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 0 ) ) | 
						
							| 105 | 104 | oveq1d | ⊢ ( 𝑖  =  0  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  =  ( ( 𝑄 ‘ 0 )  +  𝑇 ) ) | 
						
							| 106 | 105 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  =  0 )  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  =  ( ( 𝑄 ‘ 0 )  +  𝑇 ) ) | 
						
							| 107 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 108 | 4 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 109 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 110 | 109 | a1i | ⊢ ( 𝜑  →  0  ≤  0 ) | 
						
							| 111 |  | nnnn0 | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℕ0 ) | 
						
							| 112 | 111 | nn0ge0d | ⊢ ( 𝑀  ∈  ℕ  →  0  ≤  𝑀 ) | 
						
							| 113 | 4 112 | syl | ⊢ ( 𝜑  →  0  ≤  𝑀 ) | 
						
							| 114 | 107 108 107 110 113 | elfzd | ⊢ ( 𝜑  →  0  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 115 | 92 114 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  ∈  ℝ ) | 
						
							| 116 | 115 5 | readdcld | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 0 )  +  𝑇 )  ∈  ℝ ) | 
						
							| 117 | 103 106 114 116 | fvmptd | ⊢ ( 𝜑  →  ( 𝑆 ‘ 0 )  =  ( ( 𝑄 ‘ 0 )  +  𝑇 ) ) | 
						
							| 118 |  | simprll | ⊢ ( ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ 0 )  =  𝐴 ) | 
						
							| 119 | 89 118 | syl | ⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  =  𝐴 ) | 
						
							| 120 | 119 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 0 )  +  𝑇 )  =  ( 𝐴  +  𝑇 ) ) | 
						
							| 121 | 117 120 | eqtrd | ⊢ ( 𝜑  →  ( 𝑆 ‘ 0 )  =  ( 𝐴  +  𝑇 ) ) | 
						
							| 122 |  | fveq2 | ⊢ ( 𝑖  =  𝑀  →  ( 𝑄 ‘ 𝑖 )  =  ( 𝑄 ‘ 𝑀 ) ) | 
						
							| 123 | 122 | oveq1d | ⊢ ( 𝑖  =  𝑀  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  =  ( ( 𝑄 ‘ 𝑀 )  +  𝑇 ) ) | 
						
							| 124 | 123 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  =  𝑀 )  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  =  ( ( 𝑄 ‘ 𝑀 )  +  𝑇 ) ) | 
						
							| 125 | 4 | nnnn0d | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 126 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 127 | 125 126 | eleqtrdi | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 128 |  | eluzfz2 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 0 )  →  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 129 | 127 128 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 130 | 92 129 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 131 | 130 5 | readdcld | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 𝑀 )  +  𝑇 )  ∈  ℝ ) | 
						
							| 132 | 103 124 129 131 | fvmptd | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑀 )  =  ( ( 𝑄 ‘ 𝑀 )  +  𝑇 ) ) | 
						
							| 133 |  | simprlr | ⊢ ( ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  𝐴  ∧  ( 𝑄 ‘ 𝑀 )  =  𝐵 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝑄 ‘ 𝑀 )  =  𝐵 ) | 
						
							| 134 | 89 133 | syl | ⊢ ( 𝜑  →  ( 𝑄 ‘ 𝑀 )  =  𝐵 ) | 
						
							| 135 | 134 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 𝑀 )  +  𝑇 )  =  ( 𝐵  +  𝑇 ) ) | 
						
							| 136 | 132 135 | eqtrd | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑀 )  =  ( 𝐵  +  𝑇 ) ) | 
						
							| 137 | 121 136 | jca | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 0 )  =  ( 𝐴  +  𝑇 )  ∧  ( 𝑆 ‘ 𝑀 )  =  ( 𝐵  +  𝑇 ) ) ) | 
						
							| 138 | 92 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 139 |  | elfzofz | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 140 | 139 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 141 | 138 140 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 142 |  | fzofzp1 | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 143 | 142 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 144 | 138 143 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ ) | 
						
							| 145 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑇  ∈  ℝ ) | 
						
							| 146 | 89 | simprrd | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 147 | 146 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 148 | 141 144 145 147 | ltadd1dd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  <  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) | 
						
							| 149 | 141 145 | readdcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  ∈  ℝ ) | 
						
							| 150 | 8 | fvmpt2 | ⊢ ( ( 𝑖  ∈  ( 0 ... 𝑀 )  ∧  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  ∈  ℝ )  →  ( 𝑆 ‘ 𝑖 )  =  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) ) | 
						
							| 151 | 140 149 150 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑆 ‘ 𝑖 )  =  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) ) | 
						
							| 152 | 8 24 | eqtr4i | ⊢ 𝑆  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑗 )  +  𝑇 ) ) | 
						
							| 153 | 152 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑆  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑗 )  +  𝑇 ) ) ) | 
						
							| 154 |  | fveq2 | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 155 | 154 | oveq1d | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( ( 𝑄 ‘ 𝑗 )  +  𝑇 )  =  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) | 
						
							| 156 | 155 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑗  =  ( 𝑖  +  1 ) )  →  ( ( 𝑄 ‘ 𝑗 )  +  𝑇 )  =  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) | 
						
							| 157 | 144 145 | readdcld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 )  ∈  ℝ ) | 
						
							| 158 | 153 156 143 157 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑆 ‘ ( 𝑖  +  1 ) )  =  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) | 
						
							| 159 | 148 151 158 | 3brtr4d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑆 ‘ 𝑖 )  <  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 160 | 159 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑆 ‘ 𝑖 )  <  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 161 | 102 137 160 | jca32 | ⊢ ( 𝜑  →  ( 𝑆  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑆 ‘ 0 )  =  ( 𝐴  +  𝑇 )  ∧  ( 𝑆 ‘ 𝑀 )  =  ( 𝐵  +  𝑇 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑆 ‘ 𝑖 )  <  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 162 | 9 | fourierdlem2 | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑆  ∈  ( 𝐻 ‘ 𝑀 )  ↔  ( 𝑆  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑆 ‘ 0 )  =  ( 𝐴  +  𝑇 )  ∧  ( 𝑆 ‘ 𝑀 )  =  ( 𝐵  +  𝑇 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑆 ‘ 𝑖 )  <  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 163 | 4 162 | syl | ⊢ ( 𝜑  →  ( 𝑆  ∈  ( 𝐻 ‘ 𝑀 )  ↔  ( 𝑆  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑆 ‘ 0 )  =  ( 𝐴  +  𝑇 )  ∧  ( 𝑆 ‘ 𝑀 )  =  ( 𝐵  +  𝑇 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑆 ‘ 𝑖 )  <  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 164 | 161 163 | mpbird | ⊢ ( 𝜑  →  𝑆  ∈  ( 𝐻 ‘ 𝑀 ) ) | 
						
							| 165 | 9 | fveq1i | ⊢ ( 𝐻 ‘ 𝑀 )  =  ( ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  +  𝑇 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐵  +  𝑇 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) ‘ 𝑀 ) | 
						
							| 166 | 164 165 | eleqtrdi | ⊢ ( 𝜑  →  𝑆  ∈  ( ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  +  𝑇 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐵  +  𝑇 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) ‘ 𝑀 ) ) | 
						
							| 167 | 166 | adantr | ⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  𝑆  ∈  ( ( 𝑚  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑚 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  ( 𝐴  +  𝑇 )  ∧  ( 𝑝 ‘ 𝑚 )  =  ( 𝐵  +  𝑇 ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) ‘ 𝑀 ) ) | 
						
							| 168 | 62 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝐴  +  𝑇 )  ∈  ℝ ) | 
						
							| 169 | 68 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝐵  +  𝑇 )  ∈  ℝ ) | 
						
							| 170 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ) | 
						
							| 171 |  | eliccre | ⊢ ( ( ( 𝐴  +  𝑇 )  ∈  ℝ  ∧  ( 𝐵  +  𝑇 )  ∈  ℝ  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 172 | 168 169 170 171 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 173 | 172 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝑥  ∈  ℂ ) | 
						
							| 174 | 64 | negcld | ⊢ ( 𝜑  →  - 𝑇  ∈  ℂ ) | 
						
							| 175 | 174 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  - 𝑇  ∈  ℂ ) | 
						
							| 176 | 173 175 | addcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝑥  +  - 𝑇 )  ∈  ℂ ) | 
						
							| 177 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝜑 ) | 
						
							| 178 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 179 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝐵  ∈  ℝ ) | 
						
							| 180 | 5 | renegcld | ⊢ ( 𝜑  →  - 𝑇  ∈  ℝ ) | 
						
							| 181 | 180 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  - 𝑇  ∈  ℝ ) | 
						
							| 182 | 172 181 | readdcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝑥  +  - 𝑇 )  ∈  ℝ ) | 
						
							| 183 | 65 66 | eqtr2d | ⊢ ( 𝜑  →  𝐴  =  ( ( 𝐴  +  𝑇 )  +  - 𝑇 ) ) | 
						
							| 184 | 183 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝐴  =  ( ( 𝐴  +  𝑇 )  +  - 𝑇 ) ) | 
						
							| 185 | 168 | rexrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝐴  +  𝑇 )  ∈  ℝ* ) | 
						
							| 186 | 169 | rexrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝐵  +  𝑇 )  ∈  ℝ* ) | 
						
							| 187 |  | iccgelb | ⊢ ( ( ( 𝐴  +  𝑇 )  ∈  ℝ*  ∧  ( 𝐵  +  𝑇 )  ∈  ℝ*  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝐴  +  𝑇 )  ≤  𝑥 ) | 
						
							| 188 | 185 186 170 187 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝐴  +  𝑇 )  ≤  𝑥 ) | 
						
							| 189 | 168 172 181 188 | leadd1dd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( ( 𝐴  +  𝑇 )  +  - 𝑇 )  ≤  ( 𝑥  +  - 𝑇 ) ) | 
						
							| 190 | 184 189 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝐴  ≤  ( 𝑥  +  - 𝑇 ) ) | 
						
							| 191 |  | iccleub | ⊢ ( ( ( 𝐴  +  𝑇 )  ∈  ℝ*  ∧  ( 𝐵  +  𝑇 )  ∈  ℝ*  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝑥  ≤  ( 𝐵  +  𝑇 ) ) | 
						
							| 192 | 185 186 170 191 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝑥  ≤  ( 𝐵  +  𝑇 ) ) | 
						
							| 193 | 172 169 181 192 | leadd1dd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝑥  +  - 𝑇 )  ≤  ( ( 𝐵  +  𝑇 )  +  - 𝑇 ) ) | 
						
							| 194 | 169 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝐵  +  𝑇 )  ∈  ℂ ) | 
						
							| 195 | 64 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  𝑇  ∈  ℂ ) | 
						
							| 196 | 194 195 | negsubd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( ( 𝐵  +  𝑇 )  +  - 𝑇 )  =  ( ( 𝐵  +  𝑇 )  −  𝑇 ) ) | 
						
							| 197 | 71 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( ( 𝐵  +  𝑇 )  −  𝑇 )  =  𝐵 ) | 
						
							| 198 | 196 197 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( ( 𝐵  +  𝑇 )  +  - 𝑇 )  =  𝐵 ) | 
						
							| 199 | 193 198 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝑥  +  - 𝑇 )  ≤  𝐵 ) | 
						
							| 200 | 178 179 182 190 199 | eliccd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝑥  +  - 𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 201 | 177 200 | jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝜑  ∧  ( 𝑥  +  - 𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 202 |  | eleq1 | ⊢ ( 𝑦  =  ( 𝑥  +  - 𝑇 )  →  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑥  +  - 𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 203 | 202 | anbi2d | ⊢ ( 𝑦  =  ( 𝑥  +  - 𝑇 )  →  ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  ↔  ( 𝜑  ∧  ( 𝑥  +  - 𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 204 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝑥  +  - 𝑇 )  →  ( 𝑦  +  𝑇 )  =  ( ( 𝑥  +  - 𝑇 )  +  𝑇 ) ) | 
						
							| 205 | 204 | fveq2d | ⊢ ( 𝑦  =  ( 𝑥  +  - 𝑇 )  →  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ ( ( 𝑥  +  - 𝑇 )  +  𝑇 ) ) ) | 
						
							| 206 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝑥  +  - 𝑇 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑥  +  - 𝑇 ) ) ) | 
						
							| 207 | 205 206 | eqeq12d | ⊢ ( 𝑦  =  ( 𝑥  +  - 𝑇 )  →  ( ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝐹 ‘ ( ( 𝑥  +  - 𝑇 )  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑥  +  - 𝑇 ) ) ) ) | 
						
							| 208 | 203 207 | imbi12d | ⊢ ( 𝑦  =  ( 𝑥  +  - 𝑇 )  →  ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 ) )  ↔  ( ( 𝜑  ∧  ( 𝑥  +  - 𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( ( 𝑥  +  - 𝑇 )  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑥  +  - 𝑇 ) ) ) ) ) | 
						
							| 209 |  | eleq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↔  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 210 | 209 | anbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ↔  ( 𝜑  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 211 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  +  𝑇 )  =  ( 𝑦  +  𝑇 ) ) | 
						
							| 212 | 211 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) ) ) | 
						
							| 213 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 214 | 212 213 | eqeq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 215 | 210 214 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) )  ↔  ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 216 | 215 7 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 217 | 208 216 | vtoclg | ⊢ ( ( 𝑥  +  - 𝑇 )  ∈  ℂ  →  ( ( 𝜑  ∧  ( 𝑥  +  - 𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( ( 𝑥  +  - 𝑇 )  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑥  +  - 𝑇 ) ) ) ) | 
						
							| 218 | 176 201 217 | sylc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝐹 ‘ ( ( 𝑥  +  - 𝑇 )  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑥  +  - 𝑇 ) ) ) | 
						
							| 219 | 173 195 | negsubd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝑥  +  - 𝑇 )  =  ( 𝑥  −  𝑇 ) ) | 
						
							| 220 | 219 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( ( 𝑥  +  - 𝑇 )  +  𝑇 )  =  ( ( 𝑥  −  𝑇 )  +  𝑇 ) ) | 
						
							| 221 | 173 195 | npcand | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( ( 𝑥  −  𝑇 )  +  𝑇 )  =  𝑥 ) | 
						
							| 222 | 220 221 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( ( 𝑥  +  - 𝑇 )  +  𝑇 )  =  𝑥 ) | 
						
							| 223 | 222 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝐹 ‘ ( ( 𝑥  +  - 𝑇 )  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 224 | 218 223 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝐹 ‘ ( 𝑥  +  - 𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 225 | 224 | adantlr | ⊢ ( ( ( 𝜑  ∧  0  <  - 𝑇 )  ∧  𝑥  ∈  ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) )  →  ( 𝐹 ‘ ( 𝑥  +  - 𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 226 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑆 ‘ 𝑗 )  =  ( 𝑆 ‘ 𝑖 ) ) | 
						
							| 227 | 226 | oveq1d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝑆 ‘ 𝑗 )  +  - 𝑇 )  =  ( ( 𝑆 ‘ 𝑖 )  +  - 𝑇 ) ) | 
						
							| 228 | 227 | cbvmptv | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑆 ‘ 𝑗 )  +  - 𝑇 ) )  =  ( 𝑖  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑆 ‘ 𝑖 )  +  - 𝑇 ) ) | 
						
							| 229 | 10 | adantr | ⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 230 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 231 |  | ioossre | ⊢ ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ | 
						
							| 232 | 231 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ ) | 
						
							| 233 | 230 232 | feqresmpt | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝑥  ∈  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 234 | 151 158 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) )  =  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) ) | 
						
							| 235 | 141 144 145 | iooshift | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) )  =  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } ) | 
						
							| 236 | 234 235 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) )  =  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } ) | 
						
							| 237 | 236 | mpteq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) )  ↦  ( 𝐹 ‘ 𝑥 ) )  =  ( 𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) }  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 238 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  →  𝜑 ) | 
						
							| 239 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  →  𝑖  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 240 | 235 | eleq2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) )  ↔  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } ) ) | 
						
							| 241 | 240 | biimpar | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  →  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) ) | 
						
							| 242 | 141 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 243 | 242 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 244 | 144 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ* ) | 
						
							| 245 | 244 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ* ) | 
						
							| 246 |  | elioore | ⊢ ( 𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 247 | 246 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 248 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  𝑇  ∈  ℝ ) | 
						
							| 249 | 247 248 | resubcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑥  −  𝑇 )  ∈  ℝ ) | 
						
							| 250 | 249 | 3adant2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑥  −  𝑇 )  ∈  ℝ ) | 
						
							| 251 | 141 | recnd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 252 | 64 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑇  ∈  ℂ ) | 
						
							| 253 | 251 252 | pncand | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  −  𝑇 )  =  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 254 | 253 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  =  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  −  𝑇 ) ) | 
						
							| 255 | 254 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑄 ‘ 𝑖 )  =  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  −  𝑇 ) ) | 
						
							| 256 | 149 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  ∈  ℝ ) | 
						
							| 257 | 247 | 3adant2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 258 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  𝑇  ∈  ℝ ) | 
						
							| 259 | 149 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  ∈  ℝ* ) | 
						
							| 260 | 259 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  ∈  ℝ* ) | 
						
							| 261 | 157 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 )  ∈  ℝ* ) | 
						
							| 262 | 261 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 )  ∈  ℝ* ) | 
						
							| 263 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) ) | 
						
							| 264 |  | ioogtlb | ⊢ ( ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  ∈  ℝ*  ∧  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 )  ∈  ℝ*  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  <  𝑥 ) | 
						
							| 265 | 260 262 263 264 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  <  𝑥 ) | 
						
							| 266 | 256 257 258 265 | ltsub1dd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  −  𝑇 )  <  ( 𝑥  −  𝑇 ) ) | 
						
							| 267 | 255 266 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑥  −  𝑇 ) ) | 
						
							| 268 | 157 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 )  ∈  ℝ ) | 
						
							| 269 |  | iooltub | ⊢ ( ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  ∈  ℝ*  ∧  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 )  ∈  ℝ*  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  𝑥  <  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) | 
						
							| 270 | 260 262 263 269 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  𝑥  <  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) | 
						
							| 271 | 257 268 258 270 | ltsub1dd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑥  −  𝑇 )  <  ( ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 )  −  𝑇 ) ) | 
						
							| 272 | 144 | recnd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℂ ) | 
						
							| 273 | 272 252 | pncand | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 )  −  𝑇 )  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 274 | 273 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 )  −  𝑇 )  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 275 | 271 274 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑥  −  𝑇 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 276 | 243 245 250 267 275 | eliood | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑥  −  𝑇 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 277 | 238 239 241 276 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  →  ( 𝑥  −  𝑇 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 278 |  | fvres | ⊢ ( ( 𝑥  −  𝑇 )  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑥  −  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑥  −  𝑇 ) ) ) | 
						
							| 279 | 277 278 | syl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑥  −  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑥  −  𝑇 ) ) ) | 
						
							| 280 | 238 241 249 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  →  ( 𝑥  −  𝑇 )  ∈  ℝ ) | 
						
							| 281 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 282 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  𝐵  ∈  ℝ ) | 
						
							| 283 | 66 | eqcomd | ⊢ ( 𝜑  →  𝐴  =  ( ( 𝐴  +  𝑇 )  −  𝑇 ) ) | 
						
							| 284 | 283 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  𝐴  =  ( ( 𝐴  +  𝑇 )  −  𝑇 ) ) | 
						
							| 285 | 62 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝐴  +  𝑇 )  ∈  ℝ ) | 
						
							| 286 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 287 | 1 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 288 | 287 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 289 | 2 | rexrd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 290 | 289 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐵  ∈  ℝ* ) | 
						
							| 291 | 3 4 6 | fourierdlem15 | ⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) | 
						
							| 292 | 291 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) | 
						
							| 293 | 292 140 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 294 |  | iccgelb | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  ( 𝑄 ‘ 𝑖 )  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐴  ≤  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 295 | 288 290 293 294 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐴  ≤  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 296 | 286 141 145 295 | leadd1dd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐴  +  𝑇 )  ≤  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) ) | 
						
							| 297 | 296 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝐴  +  𝑇 )  ≤  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) ) | 
						
							| 298 | 285 256 257 297 265 | lelttrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝐴  +  𝑇 )  <  𝑥 ) | 
						
							| 299 | 285 257 258 298 | ltsub1dd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( ( 𝐴  +  𝑇 )  −  𝑇 )  <  ( 𝑥  −  𝑇 ) ) | 
						
							| 300 | 284 299 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  𝐴  <  ( 𝑥  −  𝑇 ) ) | 
						
							| 301 | 281 250 300 | ltled | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  𝐴  ≤  ( 𝑥  −  𝑇 ) ) | 
						
							| 302 | 144 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ ) | 
						
							| 303 | 292 143 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 304 |  | iccleub | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ≤  𝐵 ) | 
						
							| 305 | 288 290 303 304 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ≤  𝐵 ) | 
						
							| 306 | 305 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ≤  𝐵 ) | 
						
							| 307 | 250 302 282 275 306 | ltletrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑥  −  𝑇 )  <  𝐵 ) | 
						
							| 308 | 250 282 307 | ltled | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑥  −  𝑇 )  ≤  𝐵 ) | 
						
							| 309 | 281 282 250 301 308 | eliccd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 )  ∧  𝑥  ∈  ( ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) (,) ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) )  →  ( 𝑥  −  𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 310 | 238 239 241 309 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  →  ( 𝑥  −  𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 311 | 238 310 | jca | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  →  ( 𝜑  ∧  ( 𝑥  −  𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 312 |  | eleq1 | ⊢ ( 𝑦  =  ( 𝑥  −  𝑇 )  →  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑥  −  𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 313 | 312 | anbi2d | ⊢ ( 𝑦  =  ( 𝑥  −  𝑇 )  →  ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  ↔  ( 𝜑  ∧  ( 𝑥  −  𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 314 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝑥  −  𝑇 )  →  ( 𝑦  +  𝑇 )  =  ( ( 𝑥  −  𝑇 )  +  𝑇 ) ) | 
						
							| 315 | 314 | fveq2d | ⊢ ( 𝑦  =  ( 𝑥  −  𝑇 )  →  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ ( ( 𝑥  −  𝑇 )  +  𝑇 ) ) ) | 
						
							| 316 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝑥  −  𝑇 )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑥  −  𝑇 ) ) ) | 
						
							| 317 | 315 316 | eqeq12d | ⊢ ( 𝑦  =  ( 𝑥  −  𝑇 )  →  ( ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝐹 ‘ ( ( 𝑥  −  𝑇 )  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑥  −  𝑇 ) ) ) ) | 
						
							| 318 | 313 317 | imbi12d | ⊢ ( 𝑦  =  ( 𝑥  −  𝑇 )  →  ( ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 ) )  ↔  ( ( 𝜑  ∧  ( 𝑥  −  𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( ( 𝑥  −  𝑇 )  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑥  −  𝑇 ) ) ) ) ) | 
						
							| 319 | 318 216 | vtoclg | ⊢ ( ( 𝑥  −  𝑇 )  ∈  ℝ  →  ( ( 𝜑  ∧  ( 𝑥  −  𝑇 )  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( ( 𝑥  −  𝑇 )  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑥  −  𝑇 ) ) ) ) | 
						
							| 320 | 280 311 319 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  →  ( 𝐹 ‘ ( ( 𝑥  −  𝑇 )  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑥  −  𝑇 ) ) ) | 
						
							| 321 | 241 246 | syl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  →  𝑥  ∈  ℝ ) | 
						
							| 322 |  | recn | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℂ ) | 
						
							| 323 | 322 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℂ ) | 
						
							| 324 | 64 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  𝑇  ∈  ℂ ) | 
						
							| 325 | 323 324 | npcand | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ( 𝑥  −  𝑇 )  +  𝑇 )  =  𝑥 ) | 
						
							| 326 | 325 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( ( 𝑥  −  𝑇 )  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 327 | 238 321 326 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  →  ( 𝐹 ‘ ( ( 𝑥  −  𝑇 )  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 328 | 279 320 327 | 3eqtr2rd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } )  →  ( 𝐹 ‘ 𝑥 )  =  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑥  −  𝑇 ) ) ) | 
						
							| 329 | 328 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) }  ↦  ( 𝐹 ‘ 𝑥 ) )  =  ( 𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) }  ↦  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑥  −  𝑇 ) ) ) ) | 
						
							| 330 | 233 237 329 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) }  ↦  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑥  −  𝑇 ) ) ) ) | 
						
							| 331 |  | ioosscn | ⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℂ | 
						
							| 332 | 331 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℂ ) | 
						
							| 333 |  | eqeq1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤  =  ( 𝑧  +  𝑇 )  ↔  𝑥  =  ( 𝑧  +  𝑇 ) ) ) | 
						
							| 334 | 333 | rexbidv | ⊢ ( 𝑤  =  𝑥  →  ( ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 )  ↔  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑧  +  𝑇 ) ) ) | 
						
							| 335 |  | oveq1 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑧  +  𝑇 )  =  ( 𝑦  +  𝑇 ) ) | 
						
							| 336 | 335 | eqeq2d | ⊢ ( 𝑧  =  𝑦  →  ( 𝑥  =  ( 𝑧  +  𝑇 )  ↔  𝑥  =  ( 𝑦  +  𝑇 ) ) ) | 
						
							| 337 | 336 | cbvrexvw | ⊢ ( ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑧  +  𝑇 )  ↔  ∃ 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑦  +  𝑇 ) ) | 
						
							| 338 | 334 337 | bitrdi | ⊢ ( 𝑤  =  𝑥  →  ( ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 )  ↔  ∃ 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑦  +  𝑇 ) ) ) | 
						
							| 339 | 338 | cbvrabv | ⊢ { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) }  =  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑦  +  𝑇 ) } | 
						
							| 340 |  | eqid | ⊢ ( 𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) }  ↦  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑥  −  𝑇 ) ) )  =  ( 𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) }  ↦  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑥  −  𝑇 ) ) ) | 
						
							| 341 | 332 252 339 11 340 | cncfshift | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) }  ↦  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑥  −  𝑇 ) ) )  ∈  ( { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } –cn→ ℂ ) ) | 
						
							| 342 | 236 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) }  =  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 343 | 342 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } –cn→ ℂ )  =  ( ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 344 | 341 343 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑥  ∈  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) }  ↦  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ ( 𝑥  −  𝑇 ) ) )  ∈  ( ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 345 | 330 344 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 346 | 345 | adantlr | ⊢ ( ( ( 𝜑  ∧  0  <  - 𝑇 )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 347 |  | ffdm | ⊢ ( 𝐹 : ℝ ⟶ ℂ  →  ( 𝐹 : dom  𝐹 ⟶ ℂ  ∧  dom  𝐹  ⊆  ℝ ) ) | 
						
							| 348 | 10 347 | syl | ⊢ ( 𝜑  →  ( 𝐹 : dom  𝐹 ⟶ ℂ  ∧  dom  𝐹  ⊆  ℝ ) ) | 
						
							| 349 | 348 | simpld | ⊢ ( 𝜑  →  𝐹 : dom  𝐹 ⟶ ℂ ) | 
						
							| 350 | 349 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐹 : dom  𝐹 ⟶ ℂ ) | 
						
							| 351 |  | ioossre | ⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ | 
						
							| 352 |  | fdm | ⊢ ( 𝐹 : ℝ ⟶ ℂ  →  dom  𝐹  =  ℝ ) | 
						
							| 353 | 230 352 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  dom  𝐹  =  ℝ ) | 
						
							| 354 | 351 353 | sseqtrrid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  dom  𝐹 ) | 
						
							| 355 | 339 | eqcomi | ⊢ { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑦  +  𝑇 ) }  =  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) } | 
						
							| 356 | 232 342 353 | 3sstr4d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  { 𝑤  ∈  ℂ  ∣  ∃ 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑤  =  ( 𝑧  +  𝑇 ) }  ⊆  dom  𝐹 ) | 
						
							| 357 | 339 356 | eqsstrrid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑦  +  𝑇 ) }  ⊆  dom  𝐹 ) | 
						
							| 358 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝜑 ) | 
						
							| 359 | 358 287 | syl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 360 | 358 289 | syl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝐵  ∈  ℝ* ) | 
						
							| 361 | 358 291 | syl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) | 
						
							| 362 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑖  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 363 |  | ioossicc | ⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 364 | 363 | sseli | ⊢ ( 𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 365 | 364 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 366 | 359 360 361 362 365 | fourierdlem1 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑧  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 367 |  | eleq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↔  𝑧  ∈  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 368 | 367 | anbi2d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  ↔  ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 369 |  | oveq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  +  𝑇 )  =  ( 𝑧  +  𝑇 ) ) | 
						
							| 370 | 369 | fveq2d | ⊢ ( 𝑥  =  𝑧  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑧  +  𝑇 ) ) ) | 
						
							| 371 |  | fveq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 372 | 370 371 | eqeq12d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ ( 𝑧  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 373 | 368 372 | imbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) )  ↔  ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( 𝑧  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 374 | 373 7 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ ( 𝑧  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 375 | 358 366 374 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑧  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐹 ‘ ( 𝑧  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 376 | 350 332 354 252 355 357 375 12 | limcperiod | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝐹  ↾  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑦  +  𝑇 ) } )  limℂ  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) ) ) | 
						
							| 377 | 355 342 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑦  +  𝑇 ) }  =  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 378 | 377 | reseq2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑦  +  𝑇 ) } )  =  ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 379 | 151 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 )  =  ( 𝑆 ‘ 𝑖 ) ) | 
						
							| 380 | 378 379 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑦  +  𝑇 ) } )  limℂ  ( ( 𝑄 ‘ 𝑖 )  +  𝑇 ) )  =  ( ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑆 ‘ 𝑖 ) ) ) | 
						
							| 381 | 376 380 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑆 ‘ 𝑖 ) ) ) | 
						
							| 382 | 381 | adantlr | ⊢ ( ( ( 𝜑  ∧  0  <  - 𝑇 )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑅  ∈  ( ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑆 ‘ 𝑖 ) ) ) | 
						
							| 383 | 350 332 354 252 355 357 375 13 | limcperiod | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑦  +  𝑇 ) } )  limℂ  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) ) ) | 
						
							| 384 | 158 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 )  =  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 385 | 378 384 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  { 𝑥  ∈  ℂ  ∣  ∃ 𝑦  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) 𝑥  =  ( 𝑦  +  𝑇 ) } )  limℂ  ( ( 𝑄 ‘ ( 𝑖  +  1 ) )  +  𝑇 ) )  =  ( ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 386 | 383 385 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 387 | 386 | adantlr | ⊢ ( ( ( 𝜑  ∧  0  <  - 𝑇 )  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐿  ∈  ( ( 𝐹  ↾  ( ( 𝑆 ‘ 𝑖 ) (,) ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 388 |  | eqeq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  =  ( 𝑆 ‘ 𝑖 )  ↔  𝑥  =  ( 𝑆 ‘ 𝑖 ) ) ) | 
						
							| 389 |  | eqeq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  =  ( 𝑆 ‘ ( 𝑖  +  1 ) )  ↔  𝑥  =  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 390 | 389 31 | ifbieq2d | ⊢ ( 𝑦  =  𝑥  →  if ( 𝑦  =  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑦 ) )  =  if ( 𝑥  =  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 391 | 388 390 | ifbieq2d | ⊢ ( 𝑦  =  𝑥  →  if ( 𝑦  =  ( 𝑆 ‘ 𝑖 ) ,  𝑅 ,  if ( 𝑦  =  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑦 ) ) )  =  if ( 𝑥  =  ( 𝑆 ‘ 𝑖 ) ,  𝑅 ,  if ( 𝑥  =  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 392 | 391 | cbvmptv | ⊢ ( 𝑦  ∈  ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖  +  1 ) ) )  ↦  if ( 𝑦  =  ( 𝑆 ‘ 𝑖 ) ,  𝑅 ,  if ( 𝑦  =  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑦 ) ) ) )  =  ( 𝑥  ∈  ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖  +  1 ) ) )  ↦  if ( 𝑥  =  ( 𝑆 ‘ 𝑖 ) ,  𝑅 ,  if ( 𝑥  =  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 393 |  | eqid | ⊢ ( 𝑥  ∈  ( ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑆 ‘ 𝑗 )  +  - 𝑇 ) ) ‘ 𝑖 ) [,] ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑆 ‘ 𝑗 )  +  - 𝑇 ) ) ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝑦  ∈  ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖  +  1 ) ) )  ↦  if ( 𝑦  =  ( 𝑆 ‘ 𝑖 ) ,  𝑅 ,  if ( 𝑦  =  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑦 ) ) ) ) ‘ ( 𝑥  −  - 𝑇 ) ) )  =  ( 𝑥  ∈  ( ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑆 ‘ 𝑗 )  +  - 𝑇 ) ) ‘ 𝑖 ) [,] ( ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( ( 𝑆 ‘ 𝑗 )  +  - 𝑇 ) ) ‘ ( 𝑖  +  1 ) ) )  ↦  ( ( 𝑦  ∈  ( ( 𝑆 ‘ 𝑖 ) [,] ( 𝑆 ‘ ( 𝑖  +  1 ) ) )  ↦  if ( 𝑦  =  ( 𝑆 ‘ 𝑖 ) ,  𝑅 ,  if ( 𝑦  =  ( 𝑆 ‘ ( 𝑖  +  1 ) ) ,  𝐿 ,  ( 𝐹 ‘ 𝑦 ) ) ) ) ‘ ( 𝑥  −  - 𝑇 ) ) ) | 
						
							| 394 | 79 81 82 83 86 167 225 228 229 346 382 387 392 393 | fourierdlem81 | ⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  ∫ ( ( ( 𝐴  +  𝑇 )  +  - 𝑇 ) [,] ( ( 𝐵  +  𝑇 )  +  - 𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 395 | 76 394 | eqtr2d | ⊢ ( ( 𝜑  ∧  0  <  - 𝑇 )  →  ∫ ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 396 | 51 61 395 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ¬  0  <  𝑇 )  ∧  ¬  𝑇  =  0 )  →  ∫ ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 397 | 50 396 | pm2.61dan | ⊢ ( ( 𝜑  ∧  ¬  0  <  𝑇 )  →  ∫ ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) | 
						
							| 398 | 36 397 | pm2.61dan | ⊢ ( 𝜑  →  ∫ ( ( 𝐴  +  𝑇 ) [,] ( 𝐵  +  𝑇 ) ) ( 𝐹 ‘ 𝑥 )  d 𝑥  =  ∫ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑥 )  d 𝑥 ) |