| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem93.1 |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = - π ∧ ( 𝑝 ‘ 𝑚 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 2 |
|
fourierdlem93.2 |
⊢ 𝐻 = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) |
| 3 |
|
fourierdlem93.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 4 |
|
fourierdlem93.4 |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
| 5 |
|
fourierdlem93.5 |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 6 |
|
fourierdlem93.6 |
⊢ ( 𝜑 → 𝐹 : ( - π [,] π ) ⟶ ℂ ) |
| 7 |
|
fourierdlem93.7 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 8 |
|
fourierdlem93.8 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 9 |
|
fourierdlem93.9 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 10 |
1
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 11 |
3 10
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 12 |
4 11
|
mpbid |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 13 |
12
|
simprd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 14 |
13
|
simplld |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = - π ) |
| 15 |
14
|
eqcomd |
⊢ ( 𝜑 → - π = ( 𝑄 ‘ 0 ) ) |
| 16 |
13
|
simplrd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = π ) |
| 17 |
16
|
eqcomd |
⊢ ( 𝜑 → π = ( 𝑄 ‘ 𝑀 ) ) |
| 18 |
15 17
|
oveq12d |
⊢ ( 𝜑 → ( - π [,] π ) = ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) |
| 19 |
18
|
itgeq1d |
⊢ ( 𝜑 → ∫ ( - π [,] π ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = ∫ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 20 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 21 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 22 |
3 21
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
| 23 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
| 24 |
23
|
a1i |
⊢ ( 𝜑 → 1 = ( 0 + 1 ) ) |
| 25 |
24
|
fveq2d |
⊢ ( 𝜑 → ( ℤ≥ ‘ 1 ) = ( ℤ≥ ‘ ( 0 + 1 ) ) ) |
| 26 |
22 25
|
eleqtrd |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) |
| 27 |
1 3 4
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
| 28 |
|
pire |
⊢ π ∈ ℝ |
| 29 |
28
|
renegcli |
⊢ - π ∈ ℝ |
| 30 |
|
iccssre |
⊢ ( ( - π ∈ ℝ ∧ π ∈ ℝ ) → ( - π [,] π ) ⊆ ℝ ) |
| 31 |
29 28 30
|
mp2an |
⊢ ( - π [,] π ) ⊆ ℝ |
| 32 |
31
|
a1i |
⊢ ( 𝜑 → ( - π [,] π ) ⊆ ℝ ) |
| 33 |
27 32
|
fssd |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 34 |
13
|
simprd |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 35 |
34
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 36 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) → 𝐹 : ( - π [,] π ) ⟶ ℂ ) |
| 37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) → 𝑡 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) |
| 38 |
18
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) = ( - π [,] π ) ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) → ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) = ( - π [,] π ) ) |
| 40 |
37 39
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) → 𝑡 ∈ ( - π [,] π ) ) |
| 41 |
36 40
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 42 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 43 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 44 |
43
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
| 45 |
42 44
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 46 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 47 |
46
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 48 |
42 47
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 49 |
6
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑡 ∈ ( - π [,] π ) ↦ ( 𝐹 ‘ 𝑡 ) ) ) |
| 50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐹 = ( 𝑡 ∈ ( - π [,] π ) ↦ ( 𝐹 ‘ 𝑡 ) ) ) |
| 51 |
50
|
reseq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑡 ∈ ( - π [,] π ) ↦ ( 𝐹 ‘ 𝑡 ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 52 |
|
ioossicc |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 53 |
52
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 54 |
29
|
rexri |
⊢ - π ∈ ℝ* |
| 55 |
54
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → - π ∈ ℝ* ) |
| 56 |
28
|
rexri |
⊢ π ∈ ℝ* |
| 57 |
56
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → π ∈ ℝ* ) |
| 58 |
27
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
| 59 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 60 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 61 |
55 57 58 59 60
|
fourierdlem1 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑡 ∈ ( - π [,] π ) ) |
| 62 |
61
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∀ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑡 ∈ ( - π [,] π ) ) |
| 63 |
|
dfss3 |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( - π [,] π ) ↔ ∀ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) 𝑡 ∈ ( - π [,] π ) ) |
| 64 |
62 63
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
| 65 |
53 64
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( - π [,] π ) ) |
| 66 |
65
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑡 ∈ ( - π [,] π ) ↦ ( 𝐹 ‘ 𝑡 ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑡 ) ) ) |
| 67 |
51 66
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑡 ) ) ) |
| 68 |
67
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑡 ) ) = ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 69 |
68 7
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 70 |
67
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑡 ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 71 |
9 70
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑡 ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 72 |
67
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑡 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 73 |
8 72
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑡 ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 74 |
45 48 69 71 73
|
iblcncfioo |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 75 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝐹 : ( - π [,] π ) ⟶ ℂ ) |
| 76 |
75 61
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 77 |
45 48 74 76
|
ibliooicc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ 𝑡 ) ) ∈ 𝐿1 ) |
| 78 |
20 26 33 35 41 77
|
itgspltprt |
⊢ ( 𝜑 → ∫ ( ( 𝑄 ‘ 0 ) [,] ( 𝑄 ‘ 𝑀 ) ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = Σ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∫ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( 𝐹 ‘ 𝑡 ) d 𝑡 ) |
| 79 |
|
fvres |
⊢ ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) = ( 𝐹 ‘ 𝑡 ) ) |
| 80 |
79
|
eqcomd |
⊢ ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( 𝐹 ‘ 𝑡 ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) ) |
| 81 |
80
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ 𝑡 ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) ) |
| 82 |
81
|
itgeq2dv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∫ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = ∫ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) d 𝑡 ) |
| 83 |
|
eqid |
⊢ ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ↦ if ( 𝑥 = ( 𝑄 ‘ 𝑖 ) , 𝑅 , if ( 𝑥 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) , 𝐿 , ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑥 ) ) ) ) |
| 84 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐹 : ( - π [,] π ) ⟶ ℂ ) |
| 85 |
84 64
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
| 86 |
53
|
resabs1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 87 |
86 7
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 88 |
86
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 89 |
45 48 35 85
|
limcicciooub |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 90 |
88 89
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 91 |
9 90
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 92 |
86
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 93 |
92
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 94 |
45 48 35 85
|
limciccioolb |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 95 |
93 94
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 96 |
8 95
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 97 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑋 ∈ ℝ ) |
| 98 |
83 45 48 35 85 87 91 96 97
|
fourierdlem82 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∫ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) d 𝑡 = ∫ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 ) |
| 99 |
45
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 100 |
48
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 101 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) → 𝑋 ∈ ℝ ) |
| 102 |
99 101
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) → ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ∈ ℝ ) |
| 103 |
100 101
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ∈ ℝ ) |
| 104 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) → 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) |
| 105 |
|
eliccre |
⊢ ( ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ∈ ℝ ∧ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ∈ ℝ ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) → 𝑡 ∈ ℝ ) |
| 106 |
102 103 104 105
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) → 𝑡 ∈ ℝ ) |
| 107 |
101 106
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) → ( 𝑋 + 𝑡 ) ∈ ℝ ) |
| 108 |
|
elicc2 |
⊢ ( ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ∈ ℝ ∧ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ∈ ℝ ) → ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ↔ ( 𝑡 ∈ ℝ ∧ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ≤ 𝑡 ∧ 𝑡 ≤ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) ) |
| 109 |
102 103 108
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) → ( 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ↔ ( 𝑡 ∈ ℝ ∧ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ≤ 𝑡 ∧ 𝑡 ≤ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) ) |
| 110 |
104 109
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) → ( 𝑡 ∈ ℝ ∧ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ≤ 𝑡 ∧ 𝑡 ≤ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) |
| 111 |
110
|
simp2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) → ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ≤ 𝑡 ) |
| 112 |
99 101 106
|
lesubadd2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) → ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ≤ 𝑡 ↔ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑋 + 𝑡 ) ) ) |
| 113 |
111 112
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) → ( 𝑄 ‘ 𝑖 ) ≤ ( 𝑋 + 𝑡 ) ) |
| 114 |
110
|
simp3d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) → 𝑡 ≤ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
| 115 |
101 106 100
|
leaddsub2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) → ( ( 𝑋 + 𝑡 ) ≤ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ↔ 𝑡 ≤ ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) |
| 116 |
114 115
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) → ( 𝑋 + 𝑡 ) ≤ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 117 |
99 100 107 113 116
|
eliccd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) → ( 𝑋 + 𝑡 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 118 |
|
fvres |
⊢ ( ( 𝑋 + 𝑡 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑡 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) |
| 119 |
117 118
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑡 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) |
| 120 |
119
|
itgeq2dv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∫ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 = ∫ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 ) |
| 121 |
82 98 120
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∫ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = ∫ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 ) |
| 122 |
121
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∫ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = Σ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∫ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 ) |
| 123 |
|
oveq2 |
⊢ ( 𝑠 = 𝑡 → ( 𝑋 + 𝑠 ) = ( 𝑋 + 𝑡 ) ) |
| 124 |
123
|
fveq2d |
⊢ ( 𝑠 = 𝑡 → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) |
| 125 |
124
|
cbvitgv |
⊢ ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) d 𝑠 = ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 |
| 126 |
125
|
a1i |
⊢ ( 𝜑 → ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) d 𝑠 = ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 ) |
| 127 |
2
|
a1i |
⊢ ( 𝜑 → 𝐻 = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) ) |
| 128 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 0 ) ) |
| 129 |
128
|
oveq1d |
⊢ ( 𝑖 = 0 → ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑄 ‘ 0 ) − 𝑋 ) ) |
| 130 |
129
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑄 ‘ 0 ) − 𝑋 ) ) |
| 131 |
3
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 132 |
|
0le0 |
⊢ 0 ≤ 0 |
| 133 |
132
|
a1i |
⊢ ( 𝜑 → 0 ≤ 0 ) |
| 134 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 135 |
3
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 136 |
3
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑀 ) |
| 137 |
134 135 136
|
ltled |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
| 138 |
20 131 20 133 137
|
elfzd |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) ) |
| 139 |
14 29
|
eqeltrdi |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ∈ ℝ ) |
| 140 |
139 5
|
resubcld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) − 𝑋 ) ∈ ℝ ) |
| 141 |
127 130 138 140
|
fvmptd |
⊢ ( 𝜑 → ( 𝐻 ‘ 0 ) = ( ( 𝑄 ‘ 0 ) − 𝑋 ) ) |
| 142 |
14
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) − 𝑋 ) = ( - π − 𝑋 ) ) |
| 143 |
141 142
|
eqtr2d |
⊢ ( 𝜑 → ( - π − 𝑋 ) = ( 𝐻 ‘ 0 ) ) |
| 144 |
|
fveq2 |
⊢ ( 𝑖 = 𝑀 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑀 ) ) |
| 145 |
144
|
oveq1d |
⊢ ( 𝑖 = 𝑀 → ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑄 ‘ 𝑀 ) − 𝑋 ) ) |
| 146 |
145
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 = 𝑀 ) → ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑄 ‘ 𝑀 ) − 𝑋 ) ) |
| 147 |
135
|
leidd |
⊢ ( 𝜑 → 𝑀 ≤ 𝑀 ) |
| 148 |
20 131 131 137 147
|
elfzd |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑀 ) ) |
| 149 |
16 28
|
eqeltrdi |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ℝ ) |
| 150 |
149 5
|
resubcld |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑀 ) − 𝑋 ) ∈ ℝ ) |
| 151 |
127 146 148 150
|
fvmptd |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑀 ) = ( ( 𝑄 ‘ 𝑀 ) − 𝑋 ) ) |
| 152 |
16
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑀 ) − 𝑋 ) = ( π − 𝑋 ) ) |
| 153 |
151 152
|
eqtr2d |
⊢ ( 𝜑 → ( π − 𝑋 ) = ( 𝐻 ‘ 𝑀 ) ) |
| 154 |
143 153
|
oveq12d |
⊢ ( 𝜑 → ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) = ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) |
| 155 |
154
|
itgeq1d |
⊢ ( 𝜑 → ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 = ∫ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 ) |
| 156 |
33
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 157 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → 𝑋 ∈ ℝ ) |
| 158 |
156 157
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ∈ ℝ ) |
| 159 |
158 2
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
| 160 |
45 48 97 35
|
ltsub1dd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) < ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
| 161 |
44 158
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ∈ ℝ ) |
| 162 |
2
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ ( 0 ... 𝑀 ) ∧ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ∈ ℝ ) → ( 𝐻 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) |
| 163 |
44 161 162
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐻 ‘ 𝑖 ) = ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) |
| 164 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑗 ) ) |
| 165 |
164
|
oveq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑄 ‘ 𝑗 ) − 𝑋 ) ) |
| 166 |
165
|
cbvmptv |
⊢ ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) − 𝑋 ) ) |
| 167 |
2 166
|
eqtri |
⊢ 𝐻 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) − 𝑋 ) ) |
| 168 |
167
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐻 = ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) − 𝑋 ) ) ) |
| 169 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 170 |
169
|
oveq1d |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( ( 𝑄 ‘ 𝑗 ) − 𝑋 ) = ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
| 171 |
170
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑗 = ( 𝑖 + 1 ) ) → ( ( 𝑄 ‘ 𝑗 ) − 𝑋 ) = ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
| 172 |
48 97
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ∈ ℝ ) |
| 173 |
168 171 47 172
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐻 ‘ ( 𝑖 + 1 ) ) = ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) |
| 174 |
160 163 173
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐻 ‘ 𝑖 ) < ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) |
| 175 |
|
frn |
⊢ ( 𝐹 : ( - π [,] π ) ⟶ ℂ → ran 𝐹 ⊆ ℂ ) |
| 176 |
6 175
|
syl |
⊢ ( 𝜑 → ran 𝐹 ⊆ ℂ ) |
| 177 |
176
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → ran 𝐹 ⊆ ℂ ) |
| 178 |
|
ffun |
⊢ ( 𝐹 : ( - π [,] π ) ⟶ ℂ → Fun 𝐹 ) |
| 179 |
6 178
|
syl |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 180 |
179
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → Fun 𝐹 ) |
| 181 |
29
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → - π ∈ ℝ ) |
| 182 |
28
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → π ∈ ℝ ) |
| 183 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → 𝑋 ∈ ℝ ) |
| 184 |
141 140
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐻 ‘ 0 ) ∈ ℝ ) |
| 185 |
184
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → ( 𝐻 ‘ 0 ) ∈ ℝ ) |
| 186 |
151 150
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑀 ) ∈ ℝ ) |
| 187 |
186
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → ( 𝐻 ‘ 𝑀 ) ∈ ℝ ) |
| 188 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) |
| 189 |
|
eliccre |
⊢ ( ( ( 𝐻 ‘ 0 ) ∈ ℝ ∧ ( 𝐻 ‘ 𝑀 ) ∈ ℝ ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → 𝑡 ∈ ℝ ) |
| 190 |
185 187 188 189
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → 𝑡 ∈ ℝ ) |
| 191 |
183 190
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → ( 𝑋 + 𝑡 ) ∈ ℝ ) |
| 192 |
128
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 0 ) ) |
| 193 |
192
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 = 0 ) → ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) = ( ( 𝑄 ‘ 0 ) − 𝑋 ) ) |
| 194 |
127 193 138 140
|
fvmptd |
⊢ ( 𝜑 → ( 𝐻 ‘ 0 ) = ( ( 𝑄 ‘ 0 ) − 𝑋 ) ) |
| 195 |
194
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 + ( 𝐻 ‘ 0 ) ) = ( 𝑋 + ( ( 𝑄 ‘ 0 ) − 𝑋 ) ) ) |
| 196 |
5
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 197 |
139
|
recnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) ∈ ℂ ) |
| 198 |
196 197
|
pncan3d |
⊢ ( 𝜑 → ( 𝑋 + ( ( 𝑄 ‘ 0 ) − 𝑋 ) ) = ( 𝑄 ‘ 0 ) ) |
| 199 |
195 198 14
|
3eqtrrd |
⊢ ( 𝜑 → - π = ( 𝑋 + ( 𝐻 ‘ 0 ) ) ) |
| 200 |
199
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → - π = ( 𝑋 + ( 𝐻 ‘ 0 ) ) ) |
| 201 |
|
elicc2 |
⊢ ( ( ( 𝐻 ‘ 0 ) ∈ ℝ ∧ ( 𝐻 ‘ 𝑀 ) ∈ ℝ ) → ( 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ↔ ( 𝑡 ∈ ℝ ∧ ( 𝐻 ‘ 0 ) ≤ 𝑡 ∧ 𝑡 ≤ ( 𝐻 ‘ 𝑀 ) ) ) ) |
| 202 |
185 187 201
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → ( 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ↔ ( 𝑡 ∈ ℝ ∧ ( 𝐻 ‘ 0 ) ≤ 𝑡 ∧ 𝑡 ≤ ( 𝐻 ‘ 𝑀 ) ) ) ) |
| 203 |
188 202
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → ( 𝑡 ∈ ℝ ∧ ( 𝐻 ‘ 0 ) ≤ 𝑡 ∧ 𝑡 ≤ ( 𝐻 ‘ 𝑀 ) ) ) |
| 204 |
203
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → ( 𝐻 ‘ 0 ) ≤ 𝑡 ) |
| 205 |
185 190 183 204
|
leadd2dd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → ( 𝑋 + ( 𝐻 ‘ 0 ) ) ≤ ( 𝑋 + 𝑡 ) ) |
| 206 |
200 205
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → - π ≤ ( 𝑋 + 𝑡 ) ) |
| 207 |
203
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → 𝑡 ≤ ( 𝐻 ‘ 𝑀 ) ) |
| 208 |
190 187 183 207
|
leadd2dd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → ( 𝑋 + 𝑡 ) ≤ ( 𝑋 + ( 𝐻 ‘ 𝑀 ) ) ) |
| 209 |
151
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 + ( 𝐻 ‘ 𝑀 ) ) = ( 𝑋 + ( ( 𝑄 ‘ 𝑀 ) − 𝑋 ) ) ) |
| 210 |
149
|
recnd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ℂ ) |
| 211 |
196 210
|
pncan3d |
⊢ ( 𝜑 → ( 𝑋 + ( ( 𝑄 ‘ 𝑀 ) − 𝑋 ) ) = ( 𝑄 ‘ 𝑀 ) ) |
| 212 |
209 211 16
|
3eqtrrd |
⊢ ( 𝜑 → π = ( 𝑋 + ( 𝐻 ‘ 𝑀 ) ) ) |
| 213 |
212
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → π = ( 𝑋 + ( 𝐻 ‘ 𝑀 ) ) ) |
| 214 |
208 213
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → ( 𝑋 + 𝑡 ) ≤ π ) |
| 215 |
181 182 191 206 214
|
eliccd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → ( 𝑋 + 𝑡 ) ∈ ( - π [,] π ) ) |
| 216 |
|
fdm |
⊢ ( 𝐹 : ( - π [,] π ) ⟶ ℂ → dom 𝐹 = ( - π [,] π ) ) |
| 217 |
6 216
|
syl |
⊢ ( 𝜑 → dom 𝐹 = ( - π [,] π ) ) |
| 218 |
217
|
eqcomd |
⊢ ( 𝜑 → ( - π [,] π ) = dom 𝐹 ) |
| 219 |
218
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → ( - π [,] π ) = dom 𝐹 ) |
| 220 |
215 219
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → ( 𝑋 + 𝑡 ) ∈ dom 𝐹 ) |
| 221 |
|
fvelrn |
⊢ ( ( Fun 𝐹 ∧ ( 𝑋 + 𝑡 ) ∈ dom 𝐹 ) → ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ∈ ran 𝐹 ) |
| 222 |
180 220 221
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ∈ ran 𝐹 ) |
| 223 |
177 222
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ∈ ℂ ) |
| 224 |
163 161
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐻 ‘ 𝑖 ) ∈ ℝ ) |
| 225 |
173 172
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐻 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 226 |
84 65
|
fssresd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
| 227 |
45
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
| 228 |
227
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
| 229 |
48
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
| 230 |
229
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
| 231 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑋 ∈ ℝ ) |
| 232 |
|
elioore |
⊢ ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) → 𝑡 ∈ ℝ ) |
| 233 |
232
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑡 ∈ ℝ ) |
| 234 |
231 233
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑡 ) ∈ ℝ ) |
| 235 |
163
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 + ( 𝐻 ‘ 𝑖 ) ) = ( 𝑋 + ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) ) |
| 236 |
196
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑋 ∈ ℂ ) |
| 237 |
45
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℂ ) |
| 238 |
236 237
|
pncan3d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 + ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) ) = ( 𝑄 ‘ 𝑖 ) ) |
| 239 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) = ( 𝑄 ‘ 𝑖 ) ) |
| 240 |
235 238 239
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) = ( 𝑋 + ( 𝐻 ‘ 𝑖 ) ) ) |
| 241 |
240
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) = ( 𝑋 + ( 𝐻 ‘ 𝑖 ) ) ) |
| 242 |
224
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐻 ‘ 𝑖 ) ∈ ℝ ) |
| 243 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 244 |
242
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐻 ‘ 𝑖 ) ∈ ℝ* ) |
| 245 |
225
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐻 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
| 246 |
245
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐻 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
| 247 |
|
elioo2 |
⊢ ( ( ( 𝐻 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝐻 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) → ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↔ ( 𝑡 ∈ ℝ ∧ ( 𝐻 ‘ 𝑖 ) < 𝑡 ∧ 𝑡 < ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 248 |
244 246 247
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↔ ( 𝑡 ∈ ℝ ∧ ( 𝐻 ‘ 𝑖 ) < 𝑡 ∧ 𝑡 < ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 249 |
243 248
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑡 ∈ ℝ ∧ ( 𝐻 ‘ 𝑖 ) < 𝑡 ∧ 𝑡 < ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 250 |
249
|
simp2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐻 ‘ 𝑖 ) < 𝑡 ) |
| 251 |
242 233 231 250
|
ltadd2dd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + ( 𝐻 ‘ 𝑖 ) ) < ( 𝑋 + 𝑡 ) ) |
| 252 |
241 251
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑋 + 𝑡 ) ) |
| 253 |
225
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐻 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 254 |
249
|
simp3d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑡 < ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) |
| 255 |
233 253 231 254
|
ltadd2dd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑡 ) < ( 𝑋 + ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 256 |
173
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 + ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑋 + ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) |
| 257 |
48
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℂ ) |
| 258 |
236 257
|
pncan3d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 + ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 259 |
256 258
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑋 + ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 260 |
259
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 261 |
255 260
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑡 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 262 |
228 230 234 252 261
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑡 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 263 |
|
eqid |
⊢ ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) = ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) |
| 264 |
262 263
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) : ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ⟶ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 265 |
|
fcompt |
⊢ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ∧ ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) : ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ⟶ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) = ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) ) ) |
| 266 |
226 264 265
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) = ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) ) ) |
| 267 |
|
oveq2 |
⊢ ( 𝑡 = 𝑟 → ( 𝑋 + 𝑡 ) = ( 𝑋 + 𝑟 ) ) |
| 268 |
267
|
cbvmptv |
⊢ ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) = ( 𝑟 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑟 ) ) |
| 269 |
268
|
fveq1i |
⊢ ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) = ( ( 𝑟 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑟 ) ) ‘ 𝑠 ) |
| 270 |
269
|
fveq2i |
⊢ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑟 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑟 ) ) ‘ 𝑠 ) ) |
| 271 |
270
|
mpteq2i |
⊢ ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) ) = ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑟 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑟 ) ) ‘ 𝑠 ) ) ) |
| 272 |
271
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) ) = ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑟 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑟 ) ) ‘ 𝑠 ) ) ) ) |
| 273 |
|
fveq2 |
⊢ ( 𝑠 = 𝑡 → ( ( 𝑟 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑟 ) ) ‘ 𝑠 ) = ( ( 𝑟 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑟 ) ) ‘ 𝑡 ) ) |
| 274 |
273
|
fveq2d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑟 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑟 ) ) ‘ 𝑠 ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑟 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑟 ) ) ‘ 𝑡 ) ) ) |
| 275 |
274
|
cbvmptv |
⊢ ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑟 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑟 ) ) ‘ 𝑠 ) ) ) = ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑟 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑟 ) ) ‘ 𝑡 ) ) ) |
| 276 |
275
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑟 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑟 ) ) ‘ 𝑠 ) ) ) = ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑟 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑟 ) ) ‘ 𝑡 ) ) ) ) |
| 277 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑟 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑟 ) ) = ( 𝑟 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑟 ) ) ) |
| 278 |
|
oveq2 |
⊢ ( 𝑟 = 𝑡 → ( 𝑋 + 𝑟 ) = ( 𝑋 + 𝑡 ) ) |
| 279 |
278
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑟 = 𝑡 ) → ( 𝑋 + 𝑟 ) = ( 𝑋 + 𝑡 ) ) |
| 280 |
277 279 243 234
|
fvmptd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑟 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑟 ) ) ‘ 𝑡 ) = ( 𝑋 + 𝑡 ) ) |
| 281 |
280
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑟 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑟 ) ) ‘ 𝑡 ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑡 ) ) ) |
| 282 |
|
fvres |
⊢ ( ( 𝑋 + 𝑡 ) ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑡 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) |
| 283 |
262 282
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( 𝑋 + 𝑡 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) |
| 284 |
281 283
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑟 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑟 ) ) ‘ 𝑡 ) ) = ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) |
| 285 |
284
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑟 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑟 ) ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) ) |
| 286 |
272 276 285
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) ) = ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) ) |
| 287 |
266 286
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) = ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) ) |
| 288 |
|
eqid |
⊢ ( 𝑡 ∈ ℂ ↦ ( 𝑋 + 𝑡 ) ) = ( 𝑡 ∈ ℂ ↦ ( 𝑋 + 𝑡 ) ) |
| 289 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 290 |
289
|
a1i |
⊢ ( 𝑋 ∈ ℂ → ℂ ⊆ ℂ ) |
| 291 |
|
id |
⊢ ( 𝑋 ∈ ℂ → 𝑋 ∈ ℂ ) |
| 292 |
290 291 290
|
constcncfg |
⊢ ( 𝑋 ∈ ℂ → ( 𝑡 ∈ ℂ ↦ 𝑋 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 293 |
|
cncfmptid |
⊢ ( ( ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑡 ∈ ℂ ↦ 𝑡 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 294 |
289 289 293
|
mp2an |
⊢ ( 𝑡 ∈ ℂ ↦ 𝑡 ) ∈ ( ℂ –cn→ ℂ ) |
| 295 |
294
|
a1i |
⊢ ( 𝑋 ∈ ℂ → ( 𝑡 ∈ ℂ ↦ 𝑡 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 296 |
292 295
|
addcncf |
⊢ ( 𝑋 ∈ ℂ → ( 𝑡 ∈ ℂ ↦ ( 𝑋 + 𝑡 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 297 |
236 296
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ℂ ↦ ( 𝑋 + 𝑡 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 298 |
|
ioosscn |
⊢ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ |
| 299 |
298
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ ) |
| 300 |
|
ioosscn |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ |
| 301 |
300
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ ) |
| 302 |
288 297 299 301 262
|
cncfmptssg |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) –cn→ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 303 |
302 7
|
cncfco |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 304 |
287 303
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 305 |
227
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
| 306 |
229
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
| 307 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) → 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) |
| 308 |
|
vex |
⊢ 𝑟 ∈ V |
| 309 |
263
|
elrnmpt |
⊢ ( 𝑟 ∈ V → ( 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ↔ ∃ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) 𝑟 = ( 𝑋 + 𝑡 ) ) ) |
| 310 |
308 309
|
ax-mp |
⊢ ( 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ↔ ∃ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) 𝑟 = ( 𝑋 + 𝑡 ) ) |
| 311 |
307 310
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) → ∃ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) 𝑟 = ( 𝑋 + 𝑡 ) ) |
| 312 |
|
nfv |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 313 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) |
| 314 |
313
|
nfrn |
⊢ Ⅎ 𝑡 ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) |
| 315 |
314
|
nfcri |
⊢ Ⅎ 𝑡 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) |
| 316 |
312 315
|
nfan |
⊢ Ⅎ 𝑡 ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) |
| 317 |
|
nfv |
⊢ Ⅎ 𝑡 𝑟 ∈ ℝ |
| 318 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑟 = ( 𝑋 + 𝑡 ) ) → 𝑟 = ( 𝑋 + 𝑡 ) ) |
| 319 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑟 = ( 𝑋 + 𝑡 ) ) → 𝑋 ∈ ℝ ) |
| 320 |
232
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑟 = ( 𝑋 + 𝑡 ) ) → 𝑡 ∈ ℝ ) |
| 321 |
319 320
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑟 = ( 𝑋 + 𝑡 ) ) → ( 𝑋 + 𝑡 ) ∈ ℝ ) |
| 322 |
318 321
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑟 = ( 𝑋 + 𝑡 ) ) → 𝑟 ∈ ℝ ) |
| 323 |
322
|
3exp |
⊢ ( 𝜑 → ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑟 = ( 𝑋 + 𝑡 ) → 𝑟 ∈ ℝ ) ) ) |
| 324 |
323
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) → ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑟 = ( 𝑋 + 𝑡 ) → 𝑟 ∈ ℝ ) ) ) |
| 325 |
316 317 324
|
rexlimd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) → ( ∃ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) 𝑟 = ( 𝑋 + 𝑡 ) → 𝑟 ∈ ℝ ) ) |
| 326 |
311 325
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) → 𝑟 ∈ ℝ ) |
| 327 |
|
nfv |
⊢ Ⅎ 𝑡 ( 𝑄 ‘ 𝑖 ) < 𝑟 |
| 328 |
252
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑟 = ( 𝑋 + 𝑡 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑋 + 𝑡 ) ) |
| 329 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑟 = ( 𝑋 + 𝑡 ) ) → 𝑟 = ( 𝑋 + 𝑡 ) ) |
| 330 |
328 329
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑟 = ( 𝑋 + 𝑡 ) ) → ( 𝑄 ‘ 𝑖 ) < 𝑟 ) |
| 331 |
330
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑟 = ( 𝑋 + 𝑡 ) → ( 𝑄 ‘ 𝑖 ) < 𝑟 ) ) ) |
| 332 |
331
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) → ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑟 = ( 𝑋 + 𝑡 ) → ( 𝑄 ‘ 𝑖 ) < 𝑟 ) ) ) |
| 333 |
316 327 332
|
rexlimd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) → ( ∃ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) 𝑟 = ( 𝑋 + 𝑡 ) → ( 𝑄 ‘ 𝑖 ) < 𝑟 ) ) |
| 334 |
311 333
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) → ( 𝑄 ‘ 𝑖 ) < 𝑟 ) |
| 335 |
|
nfv |
⊢ Ⅎ 𝑡 𝑟 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) |
| 336 |
261
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑟 = ( 𝑋 + 𝑡 ) ) → ( 𝑋 + 𝑡 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 337 |
329 336
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑟 = ( 𝑋 + 𝑡 ) ) → 𝑟 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 338 |
337
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑟 = ( 𝑋 + 𝑡 ) → 𝑟 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 339 |
338
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) → ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑟 = ( 𝑋 + 𝑡 ) → 𝑟 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 340 |
316 335 339
|
rexlimd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) → ( ∃ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) 𝑟 = ( 𝑋 + 𝑡 ) → 𝑟 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 341 |
311 340
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) → 𝑟 < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 342 |
305 306 326 334 341
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) → 𝑟 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 343 |
217
|
ineq2d |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∩ dom 𝐹 ) = ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∩ ( - π [,] π ) ) ) |
| 344 |
343
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∩ dom 𝐹 ) = ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∩ ( - π [,] π ) ) ) |
| 345 |
|
dmres |
⊢ dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∩ dom 𝐹 ) |
| 346 |
345
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∩ dom 𝐹 ) ) |
| 347 |
|
dfss |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ( - π [,] π ) ↔ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∩ ( - π [,] π ) ) ) |
| 348 |
65 347
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) = ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ∩ ( - π [,] π ) ) ) |
| 349 |
344 346 348
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 350 |
349
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) → dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 351 |
342 350
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) → 𝑟 ∈ dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 352 |
326 341
|
ltned |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) → 𝑟 ≠ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 353 |
352
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) → ¬ 𝑟 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 354 |
|
velsn |
⊢ ( 𝑟 ∈ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ↔ 𝑟 = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 355 |
353 354
|
sylnibr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) → ¬ 𝑟 ∈ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) |
| 356 |
351 355
|
eldifd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) → 𝑟 ∈ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 357 |
356
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∀ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) 𝑟 ∈ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 358 |
|
dfss3 |
⊢ ( ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ⊆ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ↔ ∀ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) 𝑟 ∈ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 359 |
357 358
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ⊆ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 360 |
|
eqid |
⊢ ( 𝑠 ∈ ℂ ↦ ( 𝑋 + 𝑠 ) ) = ( 𝑠 ∈ ℂ ↦ ( 𝑋 + 𝑠 ) ) |
| 361 |
196
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℂ ) → 𝑋 ∈ ℂ ) |
| 362 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℂ ) → 𝑠 ∈ ℂ ) |
| 363 |
361 362
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℂ ) → ( 𝑋 + 𝑠 ) = ( 𝑠 + 𝑋 ) ) |
| 364 |
363
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑠 ∈ ℂ ↦ ( 𝑋 + 𝑠 ) ) = ( 𝑠 ∈ ℂ ↦ ( 𝑠 + 𝑋 ) ) ) |
| 365 |
|
eqid |
⊢ ( 𝑠 ∈ ℂ ↦ ( 𝑠 + 𝑋 ) ) = ( 𝑠 ∈ ℂ ↦ ( 𝑠 + 𝑋 ) ) |
| 366 |
365
|
addccncf |
⊢ ( 𝑋 ∈ ℂ → ( 𝑠 ∈ ℂ ↦ ( 𝑠 + 𝑋 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 367 |
196 366
|
syl |
⊢ ( 𝜑 → ( 𝑠 ∈ ℂ ↦ ( 𝑠 + 𝑋 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 368 |
364 367
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑠 ∈ ℂ ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 369 |
368
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ℂ ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 370 |
224
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐻 ‘ 𝑖 ) ∈ ℝ* ) |
| 371 |
|
iocssre |
⊢ ( ( ( 𝐻 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝐻 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) → ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
| 372 |
370 225 371
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
| 373 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 374 |
372 373
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ ) |
| 375 |
289
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ℂ ⊆ ℂ ) |
| 376 |
196
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑋 ∈ ℂ ) |
| 377 |
374
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ℂ ) |
| 378 |
376 377
|
addcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑠 ) ∈ ℂ ) |
| 379 |
360 369 374 375 378
|
cncfmptssg |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 380 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 381 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 382 |
380
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 383 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
| 384 |
383
|
restid |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) ) |
| 385 |
382 384
|
ax-mp |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) |
| 386 |
385
|
eqcomi |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 387 |
380 381 386
|
cncfcn |
⊢ ( ( ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 388 |
374 375 387
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 389 |
379 388
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 390 |
380
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 391 |
390
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 392 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( TopOn ‘ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 393 |
391 374 392
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( TopOn ‘ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 394 |
|
cncnp |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( TopOn ‘ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) : ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ∧ ∀ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑡 ) ) ) ) |
| 395 |
393 391 394
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) : ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ∧ ∀ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑡 ) ) ) ) |
| 396 |
389 395
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) : ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ∧ ∀ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑡 ) ) ) |
| 397 |
396
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∀ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑡 ) ) |
| 398 |
|
ubioc1 |
⊢ ( ( ( 𝐻 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝐻 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ ( 𝐻 ‘ 𝑖 ) < ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) → ( 𝐻 ‘ ( 𝑖 + 1 ) ) ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 399 |
370 245 174 398
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐻 ‘ ( 𝑖 + 1 ) ) ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 400 |
|
fveq2 |
⊢ ( 𝑡 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑡 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 401 |
400
|
eleq2d |
⊢ ( 𝑡 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) → ( ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑡 ) ↔ ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 402 |
401
|
rspccva |
⊢ ( ( ∀ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑡 ) ∧ ( 𝐻 ‘ ( 𝑖 + 1 ) ) ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 403 |
397 399 402
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 404 |
|
ioounsn |
⊢ ( ( ( 𝐻 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝐻 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ ( 𝐻 ‘ 𝑖 ) < ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) → ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) = ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 405 |
370 245 174 404
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) = ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 406 |
259
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑋 + ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 407 |
406
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) = ( 𝑋 + ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 408 |
|
iftrue |
⊢ ( 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) → if ( 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) , ( 𝑄 ‘ ( 𝑖 + 1 ) ) , ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 409 |
408
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) , ( 𝑄 ‘ ( 𝑖 + 1 ) ) , ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
| 410 |
|
oveq2 |
⊢ ( 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) → ( 𝑋 + 𝑠 ) = ( 𝑋 + ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 411 |
410
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑋 + 𝑠 ) = ( 𝑋 + ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 412 |
407 409 411
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) , ( 𝑄 ‘ ( 𝑖 + 1 ) ) , ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) = ( 𝑋 + 𝑠 ) ) |
| 413 |
|
iffalse |
⊢ ( ¬ 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) → if ( 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) , ( 𝑄 ‘ ( 𝑖 + 1 ) ) , ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) = ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) |
| 414 |
413
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ ¬ 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) , ( 𝑄 ‘ ( 𝑖 + 1 ) ) , ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) = ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) |
| 415 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ ¬ 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) = ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) |
| 416 |
|
oveq2 |
⊢ ( 𝑡 = 𝑠 → ( 𝑋 + 𝑡 ) = ( 𝑋 + 𝑠 ) ) |
| 417 |
416
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ ¬ 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∧ 𝑡 = 𝑠 ) → ( 𝑋 + 𝑡 ) = ( 𝑋 + 𝑠 ) ) |
| 418 |
|
velsn |
⊢ ( 𝑠 ∈ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ↔ 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) |
| 419 |
418
|
notbii |
⊢ ( ¬ 𝑠 ∈ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ↔ ¬ 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) |
| 420 |
|
elun |
⊢ ( 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ↔ ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∨ 𝑠 ∈ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 421 |
420
|
biimpi |
⊢ ( 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) → ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∨ 𝑠 ∈ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 422 |
421
|
orcomd |
⊢ ( 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) → ( 𝑠 ∈ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ∨ 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 423 |
422
|
ord |
⊢ ( 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) → ( ¬ 𝑠 ∈ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } → 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 424 |
419 423
|
biimtrrid |
⊢ ( 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) → ( ¬ 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) → 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 425 |
424
|
imp |
⊢ ( ( 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ∧ ¬ 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) → 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 426 |
425
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ ¬ 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) → 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 427 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ) → 𝑋 ∈ ℝ ) |
| 428 |
|
elioore |
⊢ ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) → 𝑠 ∈ ℝ ) |
| 429 |
428
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ℝ ) |
| 430 |
|
elsni |
⊢ ( 𝑠 ∈ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } → 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) |
| 431 |
430
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) → 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) |
| 432 |
225
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) → ( 𝐻 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
| 433 |
431 432
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) → 𝑠 ∈ ℝ ) |
| 434 |
429 433
|
jaodan |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∨ 𝑠 ∈ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ) → 𝑠 ∈ ℝ ) |
| 435 |
420 434
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ) → 𝑠 ∈ ℝ ) |
| 436 |
427 435
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
| 437 |
436
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ ¬ 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
| 438 |
415 417 426 437
|
fvmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ ¬ 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) → ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) = ( 𝑋 + 𝑠 ) ) |
| 439 |
414 438
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ) ∧ ¬ 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) → if ( 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) , ( 𝑄 ‘ ( 𝑖 + 1 ) ) , ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) = ( 𝑋 + 𝑠 ) ) |
| 440 |
412 439
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ) → if ( 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) , ( 𝑄 ‘ ( 𝑖 + 1 ) ) , ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) = ( 𝑋 + 𝑠 ) ) |
| 441 |
405 440
|
mpteq12dva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ↦ if ( 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) , ( 𝑄 ‘ ( 𝑖 + 1 ) ) , ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) ) = ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ) |
| 442 |
405
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 443 |
442
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ) |
| 444 |
443
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) (,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 445 |
403 441 444
|
3eltr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ↦ if ( 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) , ( 𝑄 ‘ ( 𝑖 + 1 ) ) , ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 446 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 447 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ↦ if ( 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) , ( 𝑄 ‘ ( 𝑖 + 1 ) ) , ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) ) = ( 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ↦ if ( 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) , ( 𝑄 ‘ ( 𝑖 + 1 ) ) , ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) ) |
| 448 |
264 301
|
fssd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) : ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
| 449 |
225
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐻 ‘ ( 𝑖 + 1 ) ) ∈ ℂ ) |
| 450 |
446 380 447 448 299 449
|
ellimc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) limℂ ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↔ ( 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ↦ if ( 𝑠 = ( 𝐻 ‘ ( 𝑖 + 1 ) ) , ( 𝑄 ‘ ( 𝑖 + 1 ) ) , ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ ( 𝑖 + 1 ) ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 451 |
445 450
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) limℂ ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 452 |
359 451 9
|
limccog |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) limℂ ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 453 |
266 286
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) = ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) ) |
| 454 |
453
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) limℂ ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) limℂ ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 455 |
452 454
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) limℂ ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 456 |
45
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
| 457 |
456 334
|
gtned |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) → 𝑟 ≠ ( 𝑄 ‘ 𝑖 ) ) |
| 458 |
457
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) → ¬ 𝑟 = ( 𝑄 ‘ 𝑖 ) ) |
| 459 |
|
velsn |
⊢ ( 𝑟 ∈ { ( 𝑄 ‘ 𝑖 ) } ↔ 𝑟 = ( 𝑄 ‘ 𝑖 ) ) |
| 460 |
458 459
|
sylnibr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) → ¬ 𝑟 ∈ { ( 𝑄 ‘ 𝑖 ) } ) |
| 461 |
351 460
|
eldifd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) → 𝑟 ∈ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ 𝑖 ) } ) ) |
| 462 |
461
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∀ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) 𝑟 ∈ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ 𝑖 ) } ) ) |
| 463 |
|
dfss3 |
⊢ ( ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ⊆ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ 𝑖 ) } ) ↔ ∀ 𝑟 ∈ ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) 𝑟 ∈ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ 𝑖 ) } ) ) |
| 464 |
462 463
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ran ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ⊆ ( dom ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∖ { ( 𝑄 ‘ 𝑖 ) } ) ) |
| 465 |
|
icossre |
⊢ ( ( ( 𝐻 ‘ 𝑖 ) ∈ ℝ ∧ ( 𝐻 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) → ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
| 466 |
224 245 465
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
| 467 |
466 373
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ ) |
| 468 |
196
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑋 ∈ ℂ ) |
| 469 |
467
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑠 ∈ ℂ ) |
| 470 |
468 469
|
addcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑠 ) ∈ ℂ ) |
| 471 |
360 369 467 375 470
|
cncfmptssg |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 472 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 473 |
380 472 386
|
cncfcn |
⊢ ( ( ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 474 |
467 375 473
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 475 |
471 474
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 476 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( TopOn ‘ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 477 |
391 467 476
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( TopOn ‘ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 478 |
|
cncnp |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( TopOn ‘ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) : ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ∧ ∀ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑡 ) ) ) ) |
| 479 |
477 391 478
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) : ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ∧ ∀ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑡 ) ) ) ) |
| 480 |
475 479
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) : ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ∧ ∀ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑡 ) ) ) |
| 481 |
480
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∀ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑡 ) ) |
| 482 |
|
lbico1 |
⊢ ( ( ( 𝐻 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝐻 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ ( 𝐻 ‘ 𝑖 ) < ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) → ( 𝐻 ‘ 𝑖 ) ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 483 |
370 245 174 482
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐻 ‘ 𝑖 ) ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 484 |
|
fveq2 |
⊢ ( 𝑡 = ( 𝐻 ‘ 𝑖 ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑡 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐻 ‘ 𝑖 ) ) ) |
| 485 |
484
|
eleq2d |
⊢ ( 𝑡 = ( 𝐻 ‘ 𝑖 ) → ( ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑡 ) ↔ ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐻 ‘ 𝑖 ) ) ) ) |
| 486 |
485
|
rspccva |
⊢ ( ( ∀ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑡 ) ∧ ( 𝐻 ‘ 𝑖 ) ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐻 ‘ 𝑖 ) ) ) |
| 487 |
481 483 486
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐻 ‘ 𝑖 ) ) ) |
| 488 |
|
uncom |
⊢ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) = ( { ( 𝐻 ‘ 𝑖 ) } ∪ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 489 |
|
snunioo |
⊢ ( ( ( 𝐻 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝐻 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ∧ ( 𝐻 ‘ 𝑖 ) < ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) → ( { ( 𝐻 ‘ 𝑖 ) } ∪ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 490 |
370 245 174 489
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( { ( 𝐻 ‘ 𝑖 ) } ∪ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 491 |
488 490
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) = ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 492 |
|
iftrue |
⊢ ( 𝑠 = ( 𝐻 ‘ 𝑖 ) → if ( 𝑠 = ( 𝐻 ‘ 𝑖 ) , ( 𝑄 ‘ 𝑖 ) , ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) = ( 𝑄 ‘ 𝑖 ) ) |
| 493 |
492
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 = ( 𝐻 ‘ 𝑖 ) ) → if ( 𝑠 = ( 𝐻 ‘ 𝑖 ) , ( 𝑄 ‘ 𝑖 ) , ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) = ( 𝑄 ‘ 𝑖 ) ) |
| 494 |
240
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 = ( 𝐻 ‘ 𝑖 ) ) → ( 𝑄 ‘ 𝑖 ) = ( 𝑋 + ( 𝐻 ‘ 𝑖 ) ) ) |
| 495 |
|
oveq2 |
⊢ ( 𝑠 = ( 𝐻 ‘ 𝑖 ) → ( 𝑋 + 𝑠 ) = ( 𝑋 + ( 𝐻 ‘ 𝑖 ) ) ) |
| 496 |
495
|
eqcomd |
⊢ ( 𝑠 = ( 𝐻 ‘ 𝑖 ) → ( 𝑋 + ( 𝐻 ‘ 𝑖 ) ) = ( 𝑋 + 𝑠 ) ) |
| 497 |
496
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 = ( 𝐻 ‘ 𝑖 ) ) → ( 𝑋 + ( 𝐻 ‘ 𝑖 ) ) = ( 𝑋 + 𝑠 ) ) |
| 498 |
493 494 497
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 = ( 𝐻 ‘ 𝑖 ) ) → if ( 𝑠 = ( 𝐻 ‘ 𝑖 ) , ( 𝑄 ‘ 𝑖 ) , ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) = ( 𝑋 + 𝑠 ) ) |
| 499 |
498
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ) ∧ 𝑠 = ( 𝐻 ‘ 𝑖 ) ) → if ( 𝑠 = ( 𝐻 ‘ 𝑖 ) , ( 𝑄 ‘ 𝑖 ) , ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) = ( 𝑋 + 𝑠 ) ) |
| 500 |
|
iffalse |
⊢ ( ¬ 𝑠 = ( 𝐻 ‘ 𝑖 ) → if ( 𝑠 = ( 𝐻 ‘ 𝑖 ) , ( 𝑄 ‘ 𝑖 ) , ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) = ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) |
| 501 |
500
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ) ∧ ¬ 𝑠 = ( 𝐻 ‘ 𝑖 ) ) → if ( 𝑠 = ( 𝐻 ‘ 𝑖 ) , ( 𝑄 ‘ 𝑖 ) , ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) = ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) |
| 502 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ) ∧ ¬ 𝑠 = ( 𝐻 ‘ 𝑖 ) ) → ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) = ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) |
| 503 |
416
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ) ∧ ¬ 𝑠 = ( 𝐻 ‘ 𝑖 ) ) ∧ 𝑡 = 𝑠 ) → ( 𝑋 + 𝑡 ) = ( 𝑋 + 𝑠 ) ) |
| 504 |
|
velsn |
⊢ ( 𝑠 ∈ { ( 𝐻 ‘ 𝑖 ) } ↔ 𝑠 = ( 𝐻 ‘ 𝑖 ) ) |
| 505 |
504
|
notbii |
⊢ ( ¬ 𝑠 ∈ { ( 𝐻 ‘ 𝑖 ) } ↔ ¬ 𝑠 = ( 𝐻 ‘ 𝑖 ) ) |
| 506 |
|
elun |
⊢ ( 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ↔ ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∨ 𝑠 ∈ { ( 𝐻 ‘ 𝑖 ) } ) ) |
| 507 |
506
|
biimpi |
⊢ ( 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) → ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∨ 𝑠 ∈ { ( 𝐻 ‘ 𝑖 ) } ) ) |
| 508 |
507
|
orcomd |
⊢ ( 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) → ( 𝑠 ∈ { ( 𝐻 ‘ 𝑖 ) } ∨ 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 509 |
508
|
ord |
⊢ ( 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) → ( ¬ 𝑠 ∈ { ( 𝐻 ‘ 𝑖 ) } → 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 510 |
505 509
|
biimtrrid |
⊢ ( 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) → ( ¬ 𝑠 = ( 𝐻 ‘ 𝑖 ) → 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 511 |
510
|
imp |
⊢ ( ( 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ∧ ¬ 𝑠 = ( 𝐻 ‘ 𝑖 ) ) → 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 512 |
511
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ) ∧ ¬ 𝑠 = ( 𝐻 ‘ 𝑖 ) ) → 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 513 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ) → 𝑋 ∈ ℝ ) |
| 514 |
|
elsni |
⊢ ( 𝑠 ∈ { ( 𝐻 ‘ 𝑖 ) } → 𝑠 = ( 𝐻 ‘ 𝑖 ) ) |
| 515 |
514
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ { ( 𝐻 ‘ 𝑖 ) } ) → 𝑠 = ( 𝐻 ‘ 𝑖 ) ) |
| 516 |
224
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ { ( 𝐻 ‘ 𝑖 ) } ) → ( 𝐻 ‘ 𝑖 ) ∈ ℝ ) |
| 517 |
515 516
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ { ( 𝐻 ‘ 𝑖 ) } ) → 𝑠 ∈ ℝ ) |
| 518 |
429 517
|
jaodan |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∨ 𝑠 ∈ { ( 𝐻 ‘ 𝑖 ) } ) ) → 𝑠 ∈ ℝ ) |
| 519 |
506 518
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ) → 𝑠 ∈ ℝ ) |
| 520 |
513 519
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
| 521 |
520
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ) ∧ ¬ 𝑠 = ( 𝐻 ‘ 𝑖 ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
| 522 |
502 503 512 521
|
fvmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ) ∧ ¬ 𝑠 = ( 𝐻 ‘ 𝑖 ) ) → ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) = ( 𝑋 + 𝑠 ) ) |
| 523 |
501 522
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ) ∧ ¬ 𝑠 = ( 𝐻 ‘ 𝑖 ) ) → if ( 𝑠 = ( 𝐻 ‘ 𝑖 ) , ( 𝑄 ‘ 𝑖 ) , ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) = ( 𝑋 + 𝑠 ) ) |
| 524 |
499 523
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ) → if ( 𝑠 = ( 𝐻 ‘ 𝑖 ) , ( 𝑄 ‘ 𝑖 ) , ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) = ( 𝑋 + 𝑠 ) ) |
| 525 |
491 524
|
mpteq12dva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ↦ if ( 𝑠 = ( 𝐻 ‘ 𝑖 ) , ( 𝑄 ‘ 𝑖 ) , ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) ) = ( 𝑠 ∈ ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑠 ) ) ) |
| 526 |
491
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 527 |
526
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ) |
| 528 |
527
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐻 ‘ 𝑖 ) ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐻 ‘ 𝑖 ) [,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐻 ‘ 𝑖 ) ) ) |
| 529 |
487 525 528
|
3eltr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ↦ if ( 𝑠 = ( 𝐻 ‘ 𝑖 ) , ( 𝑄 ‘ 𝑖 ) , ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐻 ‘ 𝑖 ) ) ) |
| 530 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ) |
| 531 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ↦ if ( 𝑠 = ( 𝐻 ‘ 𝑖 ) , ( 𝑄 ‘ 𝑖 ) , ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) ) = ( 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ↦ if ( 𝑠 = ( 𝐻 ‘ 𝑖 ) , ( 𝑄 ‘ 𝑖 ) , ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) ) |
| 532 |
224
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐻 ‘ 𝑖 ) ∈ ℂ ) |
| 533 |
530 380 531 448 299 532
|
ellimc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) ∈ ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) limℂ ( 𝐻 ‘ 𝑖 ) ) ↔ ( 𝑠 ∈ ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ↦ if ( 𝑠 = ( 𝐻 ‘ 𝑖 ) , ( 𝑄 ‘ 𝑖 ) , ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ‘ 𝑠 ) ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ∪ { ( 𝐻 ‘ 𝑖 ) } ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ ( 𝐻 ‘ 𝑖 ) ) ) ) |
| 534 |
529 533
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) limℂ ( 𝐻 ‘ 𝑖 ) ) ) |
| 535 |
464 534 8
|
limccog |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) limℂ ( 𝐻 ‘ 𝑖 ) ) ) |
| 536 |
453
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∘ ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝑋 + 𝑡 ) ) ) limℂ ( 𝐻 ‘ 𝑖 ) ) = ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) limℂ ( 𝐻 ‘ 𝑖 ) ) ) |
| 537 |
535 536
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) limℂ ( 𝐻 ‘ 𝑖 ) ) ) |
| 538 |
224 225 304 455 537
|
iblcncfioo |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) (,) ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) ∈ 𝐿1 ) |
| 539 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) [,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → 𝐹 : ( - π [,] π ) ⟶ ℂ ) |
| 540 |
54
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) [,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → - π ∈ ℝ* ) |
| 541 |
56
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) [,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → π ∈ ℝ* ) |
| 542 |
27
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) [,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( - π [,] π ) ) |
| 543 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) [,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
| 544 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) [,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) [,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) |
| 545 |
163 173
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐻 ‘ 𝑖 ) [,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) = ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) |
| 546 |
545
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) [,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝐻 ‘ 𝑖 ) [,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) = ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) |
| 547 |
544 546
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) [,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑡 ∈ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ) |
| 548 |
547 117
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) [,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑡 ) ∈ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 549 |
540 541 542 543 548
|
fourierdlem1 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) [,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝑋 + 𝑡 ) ∈ ( - π [,] π ) ) |
| 550 |
539 549
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) [,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ∈ ℂ ) |
| 551 |
224 225 538 550
|
ibliooicc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑡 ∈ ( ( 𝐻 ‘ 𝑖 ) [,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) ) ∈ 𝐿1 ) |
| 552 |
20 26 159 174 223 551
|
itgspltprt |
⊢ ( 𝜑 → ∫ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 = Σ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∫ ( ( 𝐻 ‘ 𝑖 ) [,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 ) |
| 553 |
545
|
itgeq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∫ ( ( 𝐻 ‘ 𝑖 ) [,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 = ∫ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 ) |
| 554 |
553
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∫ ( ( 𝐻 ‘ 𝑖 ) [,] ( 𝐻 ‘ ( 𝑖 + 1 ) ) ) ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 = Σ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∫ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 ) |
| 555 |
552 554
|
eqtrd |
⊢ ( 𝜑 → ∫ ( ( 𝐻 ‘ 0 ) [,] ( 𝐻 ‘ 𝑀 ) ) ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 = Σ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∫ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 ) |
| 556 |
126 155 555
|
3eqtrd |
⊢ ( 𝜑 → ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) d 𝑠 = Σ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∫ ( ( ( 𝑄 ‘ 𝑖 ) − 𝑋 ) [,] ( ( 𝑄 ‘ ( 𝑖 + 1 ) ) − 𝑋 ) ) ( 𝐹 ‘ ( 𝑋 + 𝑡 ) ) d 𝑡 ) |
| 557 |
122 556
|
eqtr4d |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 0 ..^ 𝑀 ) ∫ ( ( 𝑄 ‘ 𝑖 ) [,] ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) d 𝑠 ) |
| 558 |
19 78 557
|
3eqtrd |
⊢ ( 𝜑 → ∫ ( - π [,] π ) ( 𝐹 ‘ 𝑡 ) d 𝑡 = ∫ ( ( - π − 𝑋 ) [,] ( π − 𝑋 ) ) ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) d 𝑠 ) |