| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem94.f | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℝ ) | 
						
							| 2 |  | fourierdlem94.t | ⊢ 𝑇  =  ( 2  ·  π ) | 
						
							| 3 |  | fourierdlem94.per | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 4 |  | fourierdlem94.x | ⊢ ( 𝜑  →  𝑋  ∈  ℝ ) | 
						
							| 5 |  | fourierdlem94.p | ⊢ 𝑃  =  ( 𝑛  ∈  ℕ  ↦  { 𝑝  ∈  ( ℝ  ↑m  ( 0 ... 𝑛 ) )  ∣  ( ( ( 𝑝 ‘ 0 )  =  - π  ∧  ( 𝑝 ‘ 𝑛 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 )  <  ( 𝑝 ‘ ( 𝑖  +  1 ) ) ) } ) | 
						
							| 6 |  | fourierdlem94.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 7 |  | fourierdlem94.q | ⊢ ( 𝜑  →  𝑄  ∈  ( 𝑃 ‘ 𝑀 ) ) | 
						
							| 8 |  | fourierdlem94.dvcn | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 9 |  | fourierdlem94.dvlb | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) )  ≠  ∅ ) | 
						
							| 10 |  | fourierdlem94.dvub | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ≠  ∅ ) | 
						
							| 11 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 12 | 11 | renegcli | ⊢ - π  ∈  ℝ | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  - π  ∈  ℝ ) | 
						
							| 14 | 11 | a1i | ⊢ ( 𝜑  →  π  ∈  ℝ ) | 
						
							| 15 |  | negpilt0 | ⊢ - π  <  0 | 
						
							| 16 |  | pipos | ⊢ 0  <  π | 
						
							| 17 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 18 | 12 17 11 | lttri | ⊢ ( ( - π  <  0  ∧  0  <  π )  →  - π  <  π ) | 
						
							| 19 | 15 16 18 | mp2an | ⊢ - π  <  π | 
						
							| 20 | 19 | a1i | ⊢ ( 𝜑  →  - π  <  π ) | 
						
							| 21 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 22 | 21 | 2timesi | ⊢ ( 2  ·  π )  =  ( π  +  π ) | 
						
							| 23 | 21 21 | subnegi | ⊢ ( π  −  - π )  =  ( π  +  π ) | 
						
							| 24 | 22 2 23 | 3eqtr4i | ⊢ 𝑇  =  ( π  −  - π ) | 
						
							| 25 |  | ssid | ⊢ ℝ  ⊆  ℝ | 
						
							| 26 | 25 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℝ ) | 
						
							| 27 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ  ∧  𝑘  ∈  ℤ )  →  𝑥  ∈  ℝ ) | 
						
							| 28 |  | zre | ⊢ ( 𝑘  ∈  ℤ  →  𝑘  ∈  ℝ ) | 
						
							| 29 | 28 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ  ∧  𝑘  ∈  ℤ )  →  𝑘  ∈  ℝ ) | 
						
							| 30 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 31 | 30 11 | remulcli | ⊢ ( 2  ·  π )  ∈  ℝ | 
						
							| 32 | 31 | a1i | ⊢ ( 𝜑  →  ( 2  ·  π )  ∈  ℝ ) | 
						
							| 33 | 2 32 | eqeltrid | ⊢ ( 𝜑  →  𝑇  ∈  ℝ ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  𝑇  ∈  ℝ ) | 
						
							| 35 | 34 | 3adant2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ  ∧  𝑘  ∈  ℤ )  →  𝑇  ∈  ℝ ) | 
						
							| 36 | 29 35 | remulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ  ∧  𝑘  ∈  ℤ )  →  ( 𝑘  ·  𝑇 )  ∈  ℝ ) | 
						
							| 37 | 27 36 | readdcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ  ∧  𝑘  ∈  ℤ )  →  ( 𝑥  +  ( 𝑘  ·  𝑇 ) )  ∈  ℝ ) | 
						
							| 38 |  | simp1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ  ∧  𝑘  ∈  ℤ )  →  𝜑 ) | 
						
							| 39 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ  ∧  𝑘  ∈  ℤ )  →  𝑘  ∈  ℤ ) | 
						
							| 40 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 41 | 40 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℂ ) | 
						
							| 42 | 1 41 | fssd | ⊢ ( 𝜑  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑥  ∈  ℝ )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 45 | 34 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑥  ∈  ℝ )  →  𝑇  ∈  ℝ ) | 
						
							| 46 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑥  ∈  ℝ )  →  𝑘  ∈  ℤ ) | 
						
							| 47 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑥  ∈  ℝ )  →  𝑥  ∈  ℝ ) | 
						
							| 48 |  | eleq1w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  ℝ  ↔  𝑦  ∈  ℝ ) ) | 
						
							| 49 | 48 | anbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ↔  ( 𝜑  ∧  𝑦  ∈  ℝ ) ) ) | 
						
							| 50 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  +  𝑇 )  =  ( 𝑦  +  𝑇 ) ) | 
						
							| 51 | 50 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) ) ) | 
						
							| 52 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 53 | 51 52 | eqeq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 54 | 49 53 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) )  ↔  ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 55 | 54 3 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 56 | 55 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑥  ∈  ℝ )  ∧  𝑦  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑦  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 57 | 44 45 46 47 56 | fperiodmul | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  ( 𝑘  ·  𝑇 ) ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 58 | 38 39 27 57 | syl21anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ  ∧  𝑘  ∈  ℤ )  →  ( 𝐹 ‘ ( 𝑥  +  ( 𝑘  ·  𝑇 ) ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 59 | 40 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ℝ  ⊆  ℂ ) | 
						
							| 60 |  | ioossre | ⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ | 
						
							| 61 | 60 | a1i | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ ) | 
						
							| 62 | 1 61 | fssresd | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℝ ) | 
						
							| 63 | 62 41 | fssd | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ ) | 
						
							| 65 | 60 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ ) | 
						
							| 66 | 42 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 67 | 25 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ℝ  ⊆  ℝ ) | 
						
							| 68 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 69 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 70 | 68 69 | dvres | ⊢ ( ( ( ℝ  ⊆  ℂ  ∧  𝐹 : ℝ ⟶ ℂ )  ∧  ( ℝ  ⊆  ℝ  ∧  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ ) )  →  ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 71 | 59 66 67 65 70 | syl22anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 72 | 71 | dmeqd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  dom  ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  dom  ( ( ℝ  D  𝐹 )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 73 |  | ioontr | ⊢ ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 74 | 73 | reseq2i | ⊢ ( ( ℝ  D  𝐹 )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 75 | 74 | dmeqi | ⊢ dom  ( ( ℝ  D  𝐹 )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  dom  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 76 | 75 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  dom  ( ( ℝ  D  𝐹 )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  dom  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 77 |  | cncff | ⊢ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ )  →  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ ) | 
						
							| 78 |  | fdm | ⊢ ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ  →  dom  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 79 | 8 77 78 | 3syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  dom  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 80 | 72 76 79 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  dom  ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 81 |  | dvcn | ⊢ ( ( ( ℝ  ⊆  ℂ  ∧  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ  ∧  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℝ )  ∧  dom  ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 82 | 59 64 65 80 81 | syl31anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) –cn→ ℂ ) ) | 
						
							| 83 | 65 40 | sstrdi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  ℂ ) | 
						
							| 84 | 5 | fourierdlem2 | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  - π  ∧  ( 𝑄 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 85 | 6 84 | syl | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( 𝑃 ‘ 𝑀 )  ↔  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  - π  ∧  ( 𝑄 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 86 | 7 85 | mpbid | ⊢ ( 𝜑  →  ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  ∧  ( ( ( 𝑄 ‘ 0 )  =  - π  ∧  ( 𝑄 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 87 | 86 | simpld | ⊢ ( 𝜑  →  𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 88 |  | elmapi | ⊢ ( 𝑄  ∈  ( ℝ  ↑m  ( 0 ... 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 89 | 87 88 | syl | ⊢ ( 𝜑  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 90 | 89 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 91 |  | elfzofz | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 92 | 91 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  𝑖  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 93 | 90 92 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 94 | 93 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 95 |  | fzofzp1 | ⊢ ( 𝑖  ∈  ( 0 ..^ 𝑀 )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 96 | 95 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑖  +  1 )  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 97 | 90 96 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ ) | 
						
							| 98 | 86 | simprrd | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 99 | 98 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 100 | 68 94 97 99 | lptioo2cn | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 101 | 62 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℝ ) | 
						
							| 102 | 41 42 26 | dvbss | ⊢ ( 𝜑  →  dom  ( ℝ  D  𝐹 )  ⊆  ℝ ) | 
						
							| 103 |  | dvfre | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ  ∧  ℝ  ⊆  ℝ )  →  ( ℝ  D  𝐹 ) : dom  ( ℝ  D  𝐹 ) ⟶ ℝ ) | 
						
							| 104 | 1 26 103 | syl2anc | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 ) : dom  ( ℝ  D  𝐹 ) ⟶ ℝ ) | 
						
							| 105 | 86 | simprd | ⊢ ( 𝜑  →  ( ( ( 𝑄 ‘ 0 )  =  - π  ∧  ( 𝑄 ‘ 𝑀 )  =  π )  ∧  ∀ 𝑖  ∈  ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 )  <  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 106 | 105 | simplld | ⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  =  - π ) | 
						
							| 107 | 105 | simplrd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 𝑀 )  =  π ) | 
						
							| 108 | 8 77 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ⟶ ℂ ) | 
						
							| 109 | 97 | rexrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ ( 𝑖  +  1 ) )  ∈  ℝ* ) | 
						
							| 110 | 68 109 93 99 | lptioo1cn | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( 𝑄 ‘ 𝑖 )  ∈  ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 111 | 108 83 110 9 68 | ellimciota | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ℩ 𝑥 𝑥  ∈  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) )  ∈  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 112 | 108 83 100 10 68 | ellimciota | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ℩ 𝑥 𝑥  ∈  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 113 | 28 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  𝑘  ∈  ℝ ) | 
						
							| 114 | 113 34 | remulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( 𝑘  ·  𝑇 )  ∈  ℝ ) | 
						
							| 115 | 43 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑡  ∈  ℝ )  →  𝐹 : ℝ ⟶ ℂ ) | 
						
							| 116 | 34 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑡  ∈  ℝ )  →  𝑇  ∈  ℝ ) | 
						
							| 117 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑡  ∈  ℝ )  →  𝑘  ∈  ℤ ) | 
						
							| 118 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑡  ∈  ℝ )  →  𝑡  ∈  ℝ ) | 
						
							| 119 | 3 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑡  ∈  ℝ )  ∧  𝑥  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑥  +  𝑇 ) )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 120 | 115 116 117 118 119 | fperiodmul | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑡  ∈  ℝ )  →  ( 𝐹 ‘ ( 𝑡  +  ( 𝑘  ·  𝑇 ) ) )  =  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 121 |  | eqid | ⊢ ( ℝ  D  𝐹 )  =  ( ℝ  D  𝐹 ) | 
						
							| 122 | 43 114 120 121 | fperdvper | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  𝑡  ∈  dom  ( ℝ  D  𝐹 ) )  →  ( ( 𝑡  +  ( 𝑘  ·  𝑇 ) )  ∈  dom  ( ℝ  D  𝐹 )  ∧  ( ( ℝ  D  𝐹 ) ‘ ( 𝑡  +  ( 𝑘  ·  𝑇 ) ) )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) ) | 
						
							| 123 | 122 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  dom  ( ℝ  D  𝐹 ) )  ∧  𝑘  ∈  ℤ )  →  ( ( 𝑡  +  ( 𝑘  ·  𝑇 ) )  ∈  dom  ( ℝ  D  𝐹 )  ∧  ( ( ℝ  D  𝐹 ) ‘ ( 𝑡  +  ( 𝑘  ·  𝑇 ) ) )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) ) | 
						
							| 124 | 123 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  dom  ( ℝ  D  𝐹 ) )  ∧  𝑘  ∈  ℤ )  →  ( 𝑡  +  ( 𝑘  ·  𝑇 ) )  ∈  dom  ( ℝ  D  𝐹 ) ) | 
						
							| 125 | 123 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  dom  ( ℝ  D  𝐹 ) )  ∧  𝑘  ∈  ℤ )  →  ( ( ℝ  D  𝐹 ) ‘ ( 𝑡  +  ( 𝑘  ·  𝑇 ) ) )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) | 
						
							| 126 |  | fveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑄 ‘ 𝑗 )  =  ( 𝑄 ‘ 𝑖 ) ) | 
						
							| 127 |  | oveq1 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑗  +  1 )  =  ( 𝑖  +  1 ) ) | 
						
							| 128 | 127 | fveq2d | ⊢ ( 𝑗  =  𝑖  →  ( 𝑄 ‘ ( 𝑗  +  1 ) )  =  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 129 | 126 128 | oveq12d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 130 | 129 | cbvmptv | ⊢ ( 𝑗  ∈  ( 0 ..^ 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗  +  1 ) ) ) )  =  ( 𝑖  ∈  ( 0 ..^ 𝑀 )  ↦  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 131 |  | eqid | ⊢ ( 𝑡  ∈  ℝ  ↦  ( 𝑡  +  ( ( ⌊ ‘ ( ( π  −  𝑡 )  /  𝑇 ) )  ·  𝑇 ) ) )  =  ( 𝑡  ∈  ℝ  ↦  ( 𝑡  +  ( ( ⌊ ‘ ( ( π  −  𝑡 )  /  𝑇 ) )  ·  𝑇 ) ) ) | 
						
							| 132 | 102 104 13 14 20 24 6 89 106 107 8 111 112 124 125 130 131 | fourierdlem71 | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  ℝ ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 133 | 132 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 134 |  | nfv | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) ) | 
						
							| 135 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 | 
						
							| 136 | 134 135 | nfan | ⊢ Ⅎ 𝑡 ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 137 | 71 74 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) )  =  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 138 | 137 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 )  =  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 ) ) | 
						
							| 139 |  | fvres | ⊢ ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  ( ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ‘ 𝑡 )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) | 
						
							| 140 | 138 139 | sylan9eq | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 )  =  ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) | 
						
							| 141 | 140 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( abs ‘ ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 ) )  =  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) ) | 
						
							| 142 | 141 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( abs ‘ ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 ) )  =  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) ) ) | 
						
							| 143 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 144 |  | ssdmres | ⊢ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  dom  ( ℝ  D  𝐹 )  ↔  dom  ( ( ℝ  D  𝐹 )  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 145 | 79 144 | sylibr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  dom  ( ℝ  D  𝐹 ) ) | 
						
							| 146 | 145 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ⊆  dom  ( ℝ  D  𝐹 ) ) | 
						
							| 147 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 148 | 146 147 | sseldd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  𝑡  ∈  dom  ( ℝ  D  𝐹 ) ) | 
						
							| 149 |  | rspa | ⊢ ( ( ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧  ∧  𝑡  ∈  dom  ( ℝ  D  𝐹 ) )  →  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 150 | 143 148 149 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 151 | 142 150 | eqbrtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  ∧  𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  →  ( abs ‘ ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 152 | 151 | ex | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  →  ( 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  →  ( abs ‘ ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 ) ) | 
						
							| 153 | 136 152 | ralrimi | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧 )  →  ∀ 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 154 | 153 | ex | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧  →  ∀ 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 ) ) | 
						
							| 155 | 154 | reximdv | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ∃ 𝑧  ∈  ℝ ∀ 𝑡  ∈  dom  ( ℝ  D  𝐹 ) ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑡 ) )  ≤  𝑧  →  ∃ 𝑧  ∈  ℝ ∀ 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 ) ) | 
						
							| 156 | 133 155 | mpd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑡  ∈  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ( abs ‘ ( ( ℝ  D  ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) ) ‘ 𝑡 ) )  ≤  𝑧 ) | 
						
							| 157 | 93 97 101 80 156 | ioodvbdlimc2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) )  ≠  ∅ ) | 
						
							| 158 | 64 83 100 157 68 | ellimciota | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ℩ 𝑦 𝑦  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 159 |  | oveq2 | ⊢ ( 𝑦  =  𝑥  →  ( π  −  𝑦 )  =  ( π  −  𝑥 ) ) | 
						
							| 160 | 159 | oveq1d | ⊢ ( 𝑦  =  𝑥  →  ( ( π  −  𝑦 )  /  𝑇 )  =  ( ( π  −  𝑥 )  /  𝑇 ) ) | 
						
							| 161 | 160 | fveq2d | ⊢ ( 𝑦  =  𝑥  →  ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  =  ( ⌊ ‘ ( ( π  −  𝑥 )  /  𝑇 ) ) ) | 
						
							| 162 | 161 | oveq1d | ⊢ ( 𝑦  =  𝑥  →  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 )  =  ( ( ⌊ ‘ ( ( π  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) | 
						
							| 163 | 162 | cbvmptv | ⊢ ( 𝑦  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) )  =  ( 𝑥  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑥 )  /  𝑇 ) )  ·  𝑇 ) ) | 
						
							| 164 |  | id | ⊢ ( 𝑧  =  𝑥  →  𝑧  =  𝑥 ) | 
						
							| 165 |  | fveq2 | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝑦  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ‘ 𝑧 )  =  ( ( 𝑦  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ‘ 𝑥 ) ) | 
						
							| 166 | 164 165 | oveq12d | ⊢ ( 𝑧  =  𝑥  →  ( 𝑧  +  ( ( 𝑦  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ‘ 𝑧 ) )  =  ( 𝑥  +  ( ( 𝑦  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ‘ 𝑥 ) ) ) | 
						
							| 167 | 166 | cbvmptv | ⊢ ( 𝑧  ∈  ℝ  ↦  ( 𝑧  +  ( ( 𝑦  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ‘ 𝑧 ) ) )  =  ( 𝑥  ∈  ℝ  ↦  ( 𝑥  +  ( ( 𝑦  ∈  ℝ  ↦  ( ( ⌊ ‘ ( ( π  −  𝑦 )  /  𝑇 ) )  ·  𝑇 ) ) ‘ 𝑥 ) ) ) | 
						
							| 168 | 13 14 20 5 24 6 7 26 1 37 58 82 158 4 163 167 | fourierdlem49 | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  ( -∞ (,) 𝑋 ) )  limℂ  𝑋 )  ≠  ∅ ) | 
						
							| 169 | 93 97 101 80 156 | ioodvbdlimc1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) )  ≠  ∅ ) | 
						
							| 170 | 64 83 110 169 68 | ellimciota | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  →  ( ℩ 𝑦 𝑦  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) )  ∈  ( ( 𝐹  ↾  ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  limℂ  ( 𝑄 ‘ 𝑖 ) ) ) | 
						
							| 171 |  | biid | ⊢ ( ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑤  ∈  ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑘  ∈  ℤ )  ∧  𝑤  =  ( 𝑋  +  ( 𝑘  ·  𝑇 ) ) )  ↔  ( ( ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ 𝑀 ) )  ∧  𝑤  ∈  ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖  +  1 ) ) ) )  ∧  𝑘  ∈  ℤ )  ∧  𝑤  =  ( 𝑋  +  ( 𝑘  ·  𝑇 ) ) ) ) | 
						
							| 172 | 13 14 20 5 24 6 7 1 37 58 82 170 4 163 167 171 | fourierdlem48 | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  ( 𝑋 (,) +∞ ) )  limℂ  𝑋 )  ≠  ∅ ) | 
						
							| 173 | 168 172 | jca | ⊢ ( 𝜑  →  ( ( ( 𝐹  ↾  ( -∞ (,) 𝑋 ) )  limℂ  𝑋 )  ≠  ∅  ∧  ( ( 𝐹  ↾  ( 𝑋 (,) +∞ ) )  limℂ  𝑋 )  ≠  ∅ ) ) |