Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem94.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
2 |
|
fourierdlem94.t |
⊢ 𝑇 = ( 2 · π ) |
3 |
|
fourierdlem94.per |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
4 |
|
fourierdlem94.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
5 |
|
fourierdlem94.p |
⊢ 𝑃 = ( 𝑛 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑛 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = - π ∧ ( 𝑝 ‘ 𝑛 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑛 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
6 |
|
fourierdlem94.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
7 |
|
fourierdlem94.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
8 |
|
fourierdlem94.dvcn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
9 |
|
fourierdlem94.dvlb |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ≠ ∅ ) |
10 |
|
fourierdlem94.dvub |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ≠ ∅ ) |
11 |
|
pire |
⊢ π ∈ ℝ |
12 |
11
|
renegcli |
⊢ - π ∈ ℝ |
13 |
12
|
a1i |
⊢ ( 𝜑 → - π ∈ ℝ ) |
14 |
11
|
a1i |
⊢ ( 𝜑 → π ∈ ℝ ) |
15 |
|
negpilt0 |
⊢ - π < 0 |
16 |
|
pipos |
⊢ 0 < π |
17 |
|
0re |
⊢ 0 ∈ ℝ |
18 |
12 17 11
|
lttri |
⊢ ( ( - π < 0 ∧ 0 < π ) → - π < π ) |
19 |
15 16 18
|
mp2an |
⊢ - π < π |
20 |
19
|
a1i |
⊢ ( 𝜑 → - π < π ) |
21 |
|
picn |
⊢ π ∈ ℂ |
22 |
21
|
2timesi |
⊢ ( 2 · π ) = ( π + π ) |
23 |
21 21
|
subnegi |
⊢ ( π − - π ) = ( π + π ) |
24 |
22 2 23
|
3eqtr4i |
⊢ 𝑇 = ( π − - π ) |
25 |
|
ssid |
⊢ ℝ ⊆ ℝ |
26 |
25
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℝ ) |
27 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ ) → 𝑥 ∈ ℝ ) |
28 |
|
zre |
⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℝ ) |
29 |
28
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ ) → 𝑘 ∈ ℝ ) |
30 |
|
2re |
⊢ 2 ∈ ℝ |
31 |
30 11
|
remulcli |
⊢ ( 2 · π ) ∈ ℝ |
32 |
31
|
a1i |
⊢ ( 𝜑 → ( 2 · π ) ∈ ℝ ) |
33 |
2 32
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → 𝑇 ∈ ℝ ) |
35 |
34
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ ) → 𝑇 ∈ ℝ ) |
36 |
29 35
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ ) → ( 𝑘 · 𝑇 ) ∈ ℝ ) |
37 |
27 36
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ ) → ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ℝ ) |
38 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ ) → 𝜑 ) |
39 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ ) → 𝑘 ∈ ℤ ) |
40 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
41 |
40
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
42 |
1 41
|
fssd |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → 𝐹 : ℝ ⟶ ℂ ) |
44 |
43
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑥 ∈ ℝ ) → 𝐹 : ℝ ⟶ ℂ ) |
45 |
34
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑥 ∈ ℝ ) → 𝑇 ∈ ℝ ) |
46 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑥 ∈ ℝ ) → 𝑘 ∈ ℤ ) |
47 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
48 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ℝ ↔ 𝑦 ∈ ℝ ) ) |
49 |
48
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ↔ ( 𝜑 ∧ 𝑦 ∈ ℝ ) ) ) |
50 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 + 𝑇 ) = ( 𝑦 + 𝑇 ) ) |
51 |
50
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) ) |
52 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
53 |
51 52
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) ) |
54 |
49 53
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) ) ) |
55 |
54 3
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
56 |
55
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
57 |
44 45 46 47 56
|
fperiodmul |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
58 |
38 39 27 57
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ∧ 𝑘 ∈ ℤ ) → ( 𝐹 ‘ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
59 |
40
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ℝ ⊆ ℂ ) |
60 |
|
ioossre |
⊢ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ |
61 |
60
|
a1i |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
62 |
1 61
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℝ ) |
63 |
62 41
|
fssd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
65 |
60
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) |
66 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐹 : ℝ ⟶ ℂ ) |
67 |
25
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ℝ ⊆ ℝ ) |
68 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
69 |
68
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
70 |
68 69
|
dvres |
⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐹 : ℝ ⟶ ℂ ) ∧ ( ℝ ⊆ ℝ ∧ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) ) → ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
71 |
59 66 67 65 70
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
72 |
71
|
dmeqd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → dom ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) = dom ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
73 |
|
ioontr |
⊢ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
74 |
73
|
reseq2i |
⊢ ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
75 |
74
|
dmeqi |
⊢ dom ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) = dom ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
76 |
75
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → dom ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) = dom ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
77 |
|
cncff |
⊢ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
78 |
|
fdm |
⊢ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ → dom ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
79 |
8 77 78
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → dom ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
80 |
72 76 79
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → dom ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
81 |
|
dvcn |
⊢ ( ( ( ℝ ⊆ ℂ ∧ ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ∧ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℝ ) ∧ dom ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
82 |
59 64 65 80 81
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
83 |
65 40
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ ℂ ) |
84 |
5
|
fourierdlem2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
85 |
6 84
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ↔ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
86 |
7 85
|
mpbid |
⊢ ( 𝜑 → ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ∧ ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
87 |
86
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) ) |
88 |
|
elmapi |
⊢ ( 𝑄 ∈ ( ℝ ↑m ( 0 ... 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
89 |
87 88
|
syl |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
90 |
89
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ℝ ) |
91 |
|
elfzofz |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
92 |
91
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ... 𝑀 ) ) |
93 |
90 92
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ ) |
94 |
93
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ℝ* ) |
95 |
|
fzofzp1 |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
96 |
95
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑖 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
97 |
90 96
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ ) |
98 |
86
|
simprrd |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
99 |
98
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
100 |
68 94 97 99
|
lptioo2cn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
101 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℝ ) |
102 |
41 42 26
|
dvbss |
⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) ⊆ ℝ ) |
103 |
|
dvfre |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ ℝ ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
104 |
1 26 103
|
syl2anc |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
105 |
86
|
simprd |
⊢ ( 𝜑 → ( ( ( 𝑄 ‘ 0 ) = - π ∧ ( 𝑄 ‘ 𝑀 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑄 ‘ 𝑖 ) < ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
106 |
105
|
simplld |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = - π ) |
107 |
105
|
simplrd |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) = π ) |
108 |
8 77
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℂ ) |
109 |
97
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ ( 𝑖 + 1 ) ) ∈ ℝ* ) |
110 |
68 109 93 99
|
lptioo1cn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑄 ‘ 𝑖 ) ∈ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
111 |
108 83 110 9 68
|
ellimciota |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ℩ 𝑥 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) ∈ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
112 |
108 83 100 10 68
|
ellimciota |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ℩ 𝑥 𝑥 ∈ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
113 |
28
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → 𝑘 ∈ ℝ ) |
114 |
113 34
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( 𝑘 · 𝑇 ) ∈ ℝ ) |
115 |
43
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) → 𝐹 : ℝ ⟶ ℂ ) |
116 |
34
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) → 𝑇 ∈ ℝ ) |
117 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) → 𝑘 ∈ ℤ ) |
118 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) → 𝑡 ∈ ℝ ) |
119 |
3
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
120 |
115 116 117 118 119
|
fperiodmul |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑡 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑡 + ( 𝑘 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑡 ) ) |
121 |
|
eqid |
⊢ ( ℝ D 𝐹 ) = ( ℝ D 𝐹 ) |
122 |
43 114 120 121
|
fperdvper |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) ∧ 𝑡 ∈ dom ( ℝ D 𝐹 ) ) → ( ( 𝑡 + ( 𝑘 · 𝑇 ) ) ∈ dom ( ℝ D 𝐹 ) ∧ ( ( ℝ D 𝐹 ) ‘ ( 𝑡 + ( 𝑘 · 𝑇 ) ) ) = ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ) |
123 |
122
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ dom ( ℝ D 𝐹 ) ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑡 + ( 𝑘 · 𝑇 ) ) ∈ dom ( ℝ D 𝐹 ) ∧ ( ( ℝ D 𝐹 ) ‘ ( 𝑡 + ( 𝑘 · 𝑇 ) ) ) = ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ) |
124 |
123
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ dom ( ℝ D 𝐹 ) ) ∧ 𝑘 ∈ ℤ ) → ( 𝑡 + ( 𝑘 · 𝑇 ) ) ∈ dom ( ℝ D 𝐹 ) ) |
125 |
123
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ dom ( ℝ D 𝐹 ) ) ∧ 𝑘 ∈ ℤ ) → ( ( ℝ D 𝐹 ) ‘ ( 𝑡 + ( 𝑘 · 𝑇 ) ) ) = ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) |
126 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑄 ‘ 𝑗 ) = ( 𝑄 ‘ 𝑖 ) ) |
127 |
|
oveq1 |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 + 1 ) = ( 𝑖 + 1 ) ) |
128 |
127
|
fveq2d |
⊢ ( 𝑗 = 𝑖 → ( 𝑄 ‘ ( 𝑗 + 1 ) ) = ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) |
129 |
126 128
|
oveq12d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
130 |
129
|
cbvmptv |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑗 ) (,) ( 𝑄 ‘ ( 𝑗 + 1 ) ) ) ) = ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
131 |
|
eqid |
⊢ ( 𝑡 ∈ ℝ ↦ ( 𝑡 + ( ( ⌊ ‘ ( ( π − 𝑡 ) / 𝑇 ) ) · 𝑇 ) ) ) = ( 𝑡 ∈ ℝ ↦ ( 𝑡 + ( ( ⌊ ‘ ( ( π − 𝑡 ) / 𝑇 ) ) · 𝑇 ) ) ) |
132 |
102 104 13 14 20 24 6 89 106 107 8 111 112 124 125 130 131
|
fourierdlem71 |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ℝ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
133 |
132
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
134 |
|
nfv |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) |
135 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 |
136 |
134 135
|
nfan |
⊢ Ⅎ 𝑡 ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
137 |
71 74
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) |
138 |
137
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ‘ 𝑡 ) = ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) ) |
139 |
|
fvres |
⊢ ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ‘ 𝑡 ) = ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) |
140 |
138 139
|
sylan9eq |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ‘ 𝑡 ) = ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) |
141 |
140
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( abs ‘ ( ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ‘ 𝑡 ) ) = ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ) |
142 |
141
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( abs ‘ ( ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ‘ 𝑡 ) ) = ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ) |
143 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
144 |
|
ssdmres |
⊢ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom ( ℝ D 𝐹 ) ↔ dom ( ( ℝ D 𝐹 ) ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
145 |
79 144
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom ( ℝ D 𝐹 ) ) |
146 |
145
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ⊆ dom ( ℝ D 𝐹 ) ) |
147 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
148 |
146 147
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → 𝑡 ∈ dom ( ℝ D 𝐹 ) ) |
149 |
|
rspa |
⊢ ( ( ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ∧ 𝑡 ∈ dom ( ℝ D 𝐹 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
150 |
143 148 149
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
151 |
142 150
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) ∧ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) → ( abs ‘ ( ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
152 |
151
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) → ( 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) → ( abs ‘ ( ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) |
153 |
136 152
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 ) → ∀ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
154 |
153
|
ex |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 → ∀ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) |
155 |
154
|
reximdv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ∃ 𝑧 ∈ ℝ ∀ 𝑡 ∈ dom ( ℝ D 𝐹 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑡 ) ) ≤ 𝑧 → ∃ 𝑧 ∈ ℝ ∀ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) ) |
156 |
133 155
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑡 ∈ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ( abs ‘ ( ( ℝ D ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ) ‘ 𝑡 ) ) ≤ 𝑧 ) |
157 |
93 97 101 80 156
|
ioodvbdlimc2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ≠ ∅ ) |
158 |
64 83 100 157 68
|
ellimciota |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ℩ 𝑦 𝑦 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
159 |
|
oveq2 |
⊢ ( 𝑦 = 𝑥 → ( π − 𝑦 ) = ( π − 𝑥 ) ) |
160 |
159
|
oveq1d |
⊢ ( 𝑦 = 𝑥 → ( ( π − 𝑦 ) / 𝑇 ) = ( ( π − 𝑥 ) / 𝑇 ) ) |
161 |
160
|
fveq2d |
⊢ ( 𝑦 = 𝑥 → ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) = ( ⌊ ‘ ( ( π − 𝑥 ) / 𝑇 ) ) ) |
162 |
161
|
oveq1d |
⊢ ( 𝑦 = 𝑥 → ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) = ( ( ⌊ ‘ ( ( π − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) |
163 |
162
|
cbvmptv |
⊢ ( 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) = ( 𝑥 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( π − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) |
164 |
|
id |
⊢ ( 𝑧 = 𝑥 → 𝑧 = 𝑥 ) |
165 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ‘ 𝑧 ) = ( ( 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ‘ 𝑥 ) ) |
166 |
164 165
|
oveq12d |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 + ( ( 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ‘ 𝑧 ) ) = ( 𝑥 + ( ( 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ‘ 𝑥 ) ) ) |
167 |
166
|
cbvmptv |
⊢ ( 𝑧 ∈ ℝ ↦ ( 𝑧 + ( ( 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ‘ 𝑧 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( π − 𝑦 ) / 𝑇 ) ) · 𝑇 ) ) ‘ 𝑥 ) ) ) |
168 |
13 14 20 5 24 6 7 26 1 37 58 82 158 4 163 167
|
fourierdlem49 |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( -∞ (,) 𝑋 ) ) limℂ 𝑋 ) ≠ ∅ ) |
169 |
93 97 101 80 156
|
ioodvbdlimc1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ≠ ∅ ) |
170 |
64 83 110 169 68
|
ellimciota |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ℩ 𝑦 𝑦 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
171 |
|
biid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑤 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ 𝑤 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ↔ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑤 ∈ ( ( 𝑄 ‘ 𝑖 ) [,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ 𝑤 = ( 𝑋 + ( 𝑘 · 𝑇 ) ) ) ) |
172 |
13 14 20 5 24 6 7 1 37 58 82 170 4 163 167 171
|
fourierdlem48 |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ≠ ∅ ) |
173 |
168 172
|
jca |
⊢ ( 𝜑 → ( ( ( 𝐹 ↾ ( -∞ (,) 𝑋 ) ) limℂ 𝑋 ) ≠ ∅ ∧ ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ≠ ∅ ) ) |