| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ioodvbdlimc2.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
ioodvbdlimc2.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
ioodvbdlimc2.f |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 4 |
|
ioodvbdlimc2.dmdv |
⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
| 5 |
|
ioodvbdlimc2.dvbd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑦 ) |
| 6 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ ) |
| 7 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ ) |
| 8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) |
| 9 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 10 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
| 11 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑦 ) |
| 12 |
|
2fveq3 |
⊢ ( 𝑦 = 𝑥 → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) = ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 13 |
12
|
cbvmptv |
⊢ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 14 |
13
|
rneqi |
⊢ ran ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) = ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 15 |
14
|
supeq1i |
⊢ sup ( ran ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) , ℝ , < ) = sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) |
| 16 |
|
eqid |
⊢ ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) = ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) |
| 17 |
|
oveq2 |
⊢ ( 𝑘 = 𝑗 → ( 1 / 𝑘 ) = ( 1 / 𝑗 ) ) |
| 18 |
17
|
oveq2d |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 − ( 1 / 𝑘 ) ) = ( 𝐵 − ( 1 / 𝑗 ) ) ) |
| 19 |
18
|
fveq2d |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑘 ) ) ) = ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) |
| 20 |
19
|
cbvmptv |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ↦ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑘 ) ) ) ) = ( 𝑗 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ↦ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) |
| 21 |
18
|
cbvmptv |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ↦ ( 𝐵 − ( 1 / 𝑘 ) ) ) = ( 𝑗 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ↦ ( 𝐵 − ( 1 / 𝑗 ) ) ) |
| 22 |
|
eqid |
⊢ if ( ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ≤ ( ( ⌊ ‘ ( sup ( ran ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) , ℝ , < ) / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( sup ( ran ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) , ℝ , < ) / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) = if ( ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ≤ ( ( ⌊ ‘ ( sup ( ran ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) , ℝ , < ) / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( sup ( ran ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) , ℝ , < ) / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) |
| 23 |
|
biid |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ if ( ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ≤ ( ( ⌊ ‘ ( sup ( ran ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) , ℝ , < ) / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( sup ( ran ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) , ℝ , < ) / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ) ) ∧ ( abs ‘ ( ( ( 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ↦ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑘 ) ) ) ) ‘ 𝑗 ) − ( lim sup ‘ ( 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ↦ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑘 ) ) ) ) ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) ↔ ( ( ( ( ( ( 𝜑 ∧ 𝐴 < 𝐵 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ if ( ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ≤ ( ( ⌊ ‘ ( sup ( ran ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) , ℝ , < ) / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( sup ( ran ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) , ℝ , < ) / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ) ) ∧ ( abs ‘ ( ( ( 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ↦ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑘 ) ) ) ) ‘ 𝑗 ) − ( lim sup ‘ ( 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ↦ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑘 ) ) ) ) ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) ) |
| 24 |
6 7 8 9 10 11 15 16 20 21 22 23
|
ioodvbdlimc2lem |
⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → ( lim sup ‘ ( 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ↦ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑘 ) ) ) ) ) ∈ ( 𝐹 limℂ 𝐵 ) ) |
| 25 |
24
|
ne0d |
⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → ( 𝐹 limℂ 𝐵 ) ≠ ∅ ) |
| 26 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 27 |
26
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 28 |
3 27
|
fssd |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 30 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → 𝐵 ≤ 𝐴 ) |
| 31 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → 𝐴 ∈ ℝ* ) |
| 33 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → 𝐵 ∈ ℝ* ) |
| 35 |
|
ioo0 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 (,) 𝐵 ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) |
| 36 |
32 34 35
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → ( ( 𝐴 (,) 𝐵 ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) |
| 37 |
30 36
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → ( 𝐴 (,) 𝐵 ) = ∅ ) |
| 38 |
37
|
feq2d |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ↔ 𝐹 : ∅ ⟶ ℂ ) ) |
| 39 |
29 38
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → 𝐹 : ∅ ⟶ ℂ ) |
| 40 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 42 |
39 41
|
limcdm0 |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → ( 𝐹 limℂ 𝐵 ) = ℂ ) |
| 43 |
|
0cn |
⊢ 0 ∈ ℂ |
| 44 |
43
|
ne0ii |
⊢ ℂ ≠ ∅ |
| 45 |
44
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → ℂ ≠ ∅ ) |
| 46 |
42 45
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → ( 𝐹 limℂ 𝐵 ) ≠ ∅ ) |
| 47 |
25 46 1 2
|
ltlecasei |
⊢ ( 𝜑 → ( 𝐹 limℂ 𝐵 ) ≠ ∅ ) |