Step |
Hyp |
Ref |
Expression |
1 |
|
ioodvbdlimc2.a |
|- ( ph -> A e. RR ) |
2 |
|
ioodvbdlimc2.b |
|- ( ph -> B e. RR ) |
3 |
|
ioodvbdlimc2.f |
|- ( ph -> F : ( A (,) B ) --> RR ) |
4 |
|
ioodvbdlimc2.dmdv |
|- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
5 |
|
ioodvbdlimc2.dvbd |
|- ( ph -> E. y e. RR A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ y ) |
6 |
1
|
adantr |
|- ( ( ph /\ A < B ) -> A e. RR ) |
7 |
2
|
adantr |
|- ( ( ph /\ A < B ) -> B e. RR ) |
8 |
|
simpr |
|- ( ( ph /\ A < B ) -> A < B ) |
9 |
3
|
adantr |
|- ( ( ph /\ A < B ) -> F : ( A (,) B ) --> RR ) |
10 |
4
|
adantr |
|- ( ( ph /\ A < B ) -> dom ( RR _D F ) = ( A (,) B ) ) |
11 |
5
|
adantr |
|- ( ( ph /\ A < B ) -> E. y e. RR A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ y ) |
12 |
|
2fveq3 |
|- ( y = x -> ( abs ` ( ( RR _D F ) ` y ) ) = ( abs ` ( ( RR _D F ) ` x ) ) ) |
13 |
12
|
cbvmptv |
|- ( y e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` y ) ) ) = ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) |
14 |
13
|
rneqi |
|- ran ( y e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` y ) ) ) = ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) |
15 |
14
|
supeq1i |
|- sup ( ran ( y e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` y ) ) ) , RR , < ) = sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) |
16 |
|
eqid |
|- ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) = ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) |
17 |
|
oveq2 |
|- ( k = j -> ( 1 / k ) = ( 1 / j ) ) |
18 |
17
|
oveq2d |
|- ( k = j -> ( B - ( 1 / k ) ) = ( B - ( 1 / j ) ) ) |
19 |
18
|
fveq2d |
|- ( k = j -> ( F ` ( B - ( 1 / k ) ) ) = ( F ` ( B - ( 1 / j ) ) ) ) |
20 |
19
|
cbvmptv |
|- ( k e. ( ZZ>= ` ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |-> ( F ` ( B - ( 1 / k ) ) ) ) = ( j e. ( ZZ>= ` ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |-> ( F ` ( B - ( 1 / j ) ) ) ) |
21 |
18
|
cbvmptv |
|- ( k e. ( ZZ>= ` ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |-> ( B - ( 1 / k ) ) ) = ( j e. ( ZZ>= ` ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |-> ( B - ( 1 / j ) ) ) |
22 |
|
eqid |
|- if ( ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) <_ ( ( |_ ` ( sup ( ran ( y e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` y ) ) ) , RR , < ) / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( sup ( ran ( y e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` y ) ) ) , RR , < ) / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) = if ( ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) <_ ( ( |_ ` ( sup ( ran ( y e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` y ) ) ) , RR , < ) / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( sup ( ran ( y e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` y ) ) ) , RR , < ) / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |
23 |
|
biid |
|- ( ( ( ( ( ( ( ph /\ A < B ) /\ x e. RR+ ) /\ j e. ( ZZ>= ` if ( ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) <_ ( ( |_ ` ( sup ( ran ( y e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` y ) ) ) , RR , < ) / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( sup ( ran ( y e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` y ) ) ) , RR , < ) / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) ) ) /\ ( abs ` ( ( ( k e. ( ZZ>= ` ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |-> ( F ` ( B - ( 1 / k ) ) ) ) ` j ) - ( limsup ` ( k e. ( ZZ>= ` ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |-> ( F ` ( B - ( 1 / k ) ) ) ) ) ) ) < ( x / 2 ) ) /\ z e. ( A (,) B ) ) /\ ( abs ` ( z - B ) ) < ( 1 / j ) ) <-> ( ( ( ( ( ( ph /\ A < B ) /\ x e. RR+ ) /\ j e. ( ZZ>= ` if ( ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) <_ ( ( |_ ` ( sup ( ran ( y e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` y ) ) ) , RR , < ) / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( sup ( ran ( y e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` y ) ) ) , RR , < ) / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) ) ) /\ ( abs ` ( ( ( k e. ( ZZ>= ` ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |-> ( F ` ( B - ( 1 / k ) ) ) ) ` j ) - ( limsup ` ( k e. ( ZZ>= ` ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |-> ( F ` ( B - ( 1 / k ) ) ) ) ) ) ) < ( x / 2 ) ) /\ z e. ( A (,) B ) ) /\ ( abs ` ( z - B ) ) < ( 1 / j ) ) ) |
24 |
6 7 8 9 10 11 15 16 20 21 22 23
|
ioodvbdlimc2lem |
|- ( ( ph /\ A < B ) -> ( limsup ` ( k e. ( ZZ>= ` ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |-> ( F ` ( B - ( 1 / k ) ) ) ) ) e. ( F limCC B ) ) |
25 |
24
|
ne0d |
|- ( ( ph /\ A < B ) -> ( F limCC B ) =/= (/) ) |
26 |
|
ax-resscn |
|- RR C_ CC |
27 |
26
|
a1i |
|- ( ph -> RR C_ CC ) |
28 |
3 27
|
fssd |
|- ( ph -> F : ( A (,) B ) --> CC ) |
29 |
28
|
adantr |
|- ( ( ph /\ B <_ A ) -> F : ( A (,) B ) --> CC ) |
30 |
|
simpr |
|- ( ( ph /\ B <_ A ) -> B <_ A ) |
31 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
32 |
31
|
adantr |
|- ( ( ph /\ B <_ A ) -> A e. RR* ) |
33 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
34 |
33
|
adantr |
|- ( ( ph /\ B <_ A ) -> B e. RR* ) |
35 |
|
ioo0 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) |
36 |
32 34 35
|
syl2anc |
|- ( ( ph /\ B <_ A ) -> ( ( A (,) B ) = (/) <-> B <_ A ) ) |
37 |
30 36
|
mpbird |
|- ( ( ph /\ B <_ A ) -> ( A (,) B ) = (/) ) |
38 |
37
|
feq2d |
|- ( ( ph /\ B <_ A ) -> ( F : ( A (,) B ) --> CC <-> F : (/) --> CC ) ) |
39 |
29 38
|
mpbid |
|- ( ( ph /\ B <_ A ) -> F : (/) --> CC ) |
40 |
2
|
recnd |
|- ( ph -> B e. CC ) |
41 |
40
|
adantr |
|- ( ( ph /\ B <_ A ) -> B e. CC ) |
42 |
39 41
|
limcdm0 |
|- ( ( ph /\ B <_ A ) -> ( F limCC B ) = CC ) |
43 |
|
0cn |
|- 0 e. CC |
44 |
43
|
ne0ii |
|- CC =/= (/) |
45 |
44
|
a1i |
|- ( ( ph /\ B <_ A ) -> CC =/= (/) ) |
46 |
42 45
|
eqnetrd |
|- ( ( ph /\ B <_ A ) -> ( F limCC B ) =/= (/) ) |
47 |
25 46 1 2
|
ltlecasei |
|- ( ph -> ( F limCC B ) =/= (/) ) |