| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ioodvbdlimc2lem.a |
|- ( ph -> A e. RR ) |
| 2 |
|
ioodvbdlimc2lem.b |
|- ( ph -> B e. RR ) |
| 3 |
|
ioodvbdlimc2lem.altb |
|- ( ph -> A < B ) |
| 4 |
|
ioodvbdlimc2lem.f |
|- ( ph -> F : ( A (,) B ) --> RR ) |
| 5 |
|
ioodvbdlimc2lem.dmdv |
|- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
| 6 |
|
ioodvbdlimc2lem.dvbd |
|- ( ph -> E. y e. RR A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ y ) |
| 7 |
|
ioodvbdlimc2lem.y |
|- Y = sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) |
| 8 |
|
ioodvbdlimc2lem.m |
|- M = ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) |
| 9 |
|
ioodvbdlimc2lem.s |
|- S = ( j e. ( ZZ>= ` M ) |-> ( F ` ( B - ( 1 / j ) ) ) ) |
| 10 |
|
ioodvbdlimc2lem.r |
|- R = ( j e. ( ZZ>= ` M ) |-> ( B - ( 1 / j ) ) ) |
| 11 |
|
ioodvbdlimc2lem.n |
|- N = if ( M <_ ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , M ) |
| 12 |
|
ioodvbdlimc2lem.ch |
|- ( ch <-> ( ( ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) /\ z e. ( A (,) B ) ) /\ ( abs ` ( z - B ) ) < ( 1 / j ) ) ) |
| 13 |
|
uzssz |
|- ( ZZ>= ` M ) C_ ZZ |
| 14 |
|
zssre |
|- ZZ C_ RR |
| 15 |
13 14
|
sstri |
|- ( ZZ>= ` M ) C_ RR |
| 16 |
15
|
a1i |
|- ( ph -> ( ZZ>= ` M ) C_ RR ) |
| 17 |
2 1
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
| 18 |
1 2
|
posdifd |
|- ( ph -> ( A < B <-> 0 < ( B - A ) ) ) |
| 19 |
3 18
|
mpbid |
|- ( ph -> 0 < ( B - A ) ) |
| 20 |
19
|
gt0ne0d |
|- ( ph -> ( B - A ) =/= 0 ) |
| 21 |
17 20
|
rereccld |
|- ( ph -> ( 1 / ( B - A ) ) e. RR ) |
| 22 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 23 |
17 19
|
recgt0d |
|- ( ph -> 0 < ( 1 / ( B - A ) ) ) |
| 24 |
22 21 23
|
ltled |
|- ( ph -> 0 <_ ( 1 / ( B - A ) ) ) |
| 25 |
|
flge0nn0 |
|- ( ( ( 1 / ( B - A ) ) e. RR /\ 0 <_ ( 1 / ( B - A ) ) ) -> ( |_ ` ( 1 / ( B - A ) ) ) e. NN0 ) |
| 26 |
21 24 25
|
syl2anc |
|- ( ph -> ( |_ ` ( 1 / ( B - A ) ) ) e. NN0 ) |
| 27 |
|
peano2nn0 |
|- ( ( |_ ` ( 1 / ( B - A ) ) ) e. NN0 -> ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) e. NN0 ) |
| 28 |
26 27
|
syl |
|- ( ph -> ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) e. NN0 ) |
| 29 |
8 28
|
eqeltrid |
|- ( ph -> M e. NN0 ) |
| 30 |
29
|
nn0zd |
|- ( ph -> M e. ZZ ) |
| 31 |
|
eqid |
|- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
| 32 |
31
|
uzsup |
|- ( M e. ZZ -> sup ( ( ZZ>= ` M ) , RR* , < ) = +oo ) |
| 33 |
30 32
|
syl |
|- ( ph -> sup ( ( ZZ>= ` M ) , RR* , < ) = +oo ) |
| 34 |
4
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> F : ( A (,) B ) --> RR ) |
| 35 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 36 |
35
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> A e. RR* ) |
| 37 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 38 |
37
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> B e. RR* ) |
| 39 |
2
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> B e. RR ) |
| 40 |
|
eluzelre |
|- ( j e. ( ZZ>= ` M ) -> j e. RR ) |
| 41 |
40
|
adantl |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> j e. RR ) |
| 42 |
|
0red |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> 0 e. RR ) |
| 43 |
|
0red |
|- ( j e. ( ZZ>= ` M ) -> 0 e. RR ) |
| 44 |
|
1red |
|- ( j e. ( ZZ>= ` M ) -> 1 e. RR ) |
| 45 |
43 44
|
readdcld |
|- ( j e. ( ZZ>= ` M ) -> ( 0 + 1 ) e. RR ) |
| 46 |
45
|
adantl |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( 0 + 1 ) e. RR ) |
| 47 |
43
|
ltp1d |
|- ( j e. ( ZZ>= ` M ) -> 0 < ( 0 + 1 ) ) |
| 48 |
47
|
adantl |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> 0 < ( 0 + 1 ) ) |
| 49 |
|
eluzel2 |
|- ( j e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 50 |
49
|
zred |
|- ( j e. ( ZZ>= ` M ) -> M e. RR ) |
| 51 |
50
|
adantl |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> M e. RR ) |
| 52 |
21
|
flcld |
|- ( ph -> ( |_ ` ( 1 / ( B - A ) ) ) e. ZZ ) |
| 53 |
52
|
zred |
|- ( ph -> ( |_ ` ( 1 / ( B - A ) ) ) e. RR ) |
| 54 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 55 |
26
|
nn0ge0d |
|- ( ph -> 0 <_ ( |_ ` ( 1 / ( B - A ) ) ) ) |
| 56 |
22 53 54 55
|
leadd1dd |
|- ( ph -> ( 0 + 1 ) <_ ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |
| 57 |
56 8
|
breqtrrdi |
|- ( ph -> ( 0 + 1 ) <_ M ) |
| 58 |
57
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( 0 + 1 ) <_ M ) |
| 59 |
|
eluzle |
|- ( j e. ( ZZ>= ` M ) -> M <_ j ) |
| 60 |
59
|
adantl |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> M <_ j ) |
| 61 |
46 51 41 58 60
|
letrd |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( 0 + 1 ) <_ j ) |
| 62 |
42 46 41 48 61
|
ltletrd |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> 0 < j ) |
| 63 |
62
|
gt0ne0d |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> j =/= 0 ) |
| 64 |
41 63
|
rereccld |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( 1 / j ) e. RR ) |
| 65 |
39 64
|
resubcld |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( B - ( 1 / j ) ) e. RR ) |
| 66 |
1
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> A e. RR ) |
| 67 |
29
|
nn0red |
|- ( ph -> M e. RR ) |
| 68 |
22 54
|
readdcld |
|- ( ph -> ( 0 + 1 ) e. RR ) |
| 69 |
53 54
|
readdcld |
|- ( ph -> ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) e. RR ) |
| 70 |
22
|
ltp1d |
|- ( ph -> 0 < ( 0 + 1 ) ) |
| 71 |
22 68 69 70 56
|
ltletrd |
|- ( ph -> 0 < ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |
| 72 |
71 8
|
breqtrrdi |
|- ( ph -> 0 < M ) |
| 73 |
72
|
gt0ne0d |
|- ( ph -> M =/= 0 ) |
| 74 |
67 73
|
rereccld |
|- ( ph -> ( 1 / M ) e. RR ) |
| 75 |
74
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( 1 / M ) e. RR ) |
| 76 |
39 75
|
resubcld |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( B - ( 1 / M ) ) e. RR ) |
| 77 |
8
|
eqcomi |
|- ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) = M |
| 78 |
77
|
oveq2i |
|- ( 1 / ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) = ( 1 / M ) |
| 79 |
78 74
|
eqeltrid |
|- ( ph -> ( 1 / ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) e. RR ) |
| 80 |
21 23
|
elrpd |
|- ( ph -> ( 1 / ( B - A ) ) e. RR+ ) |
| 81 |
69 71
|
elrpd |
|- ( ph -> ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) e. RR+ ) |
| 82 |
|
1rp |
|- 1 e. RR+ |
| 83 |
82
|
a1i |
|- ( ph -> 1 e. RR+ ) |
| 84 |
|
fllelt |
|- ( ( 1 / ( B - A ) ) e. RR -> ( ( |_ ` ( 1 / ( B - A ) ) ) <_ ( 1 / ( B - A ) ) /\ ( 1 / ( B - A ) ) < ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) ) |
| 85 |
21 84
|
syl |
|- ( ph -> ( ( |_ ` ( 1 / ( B - A ) ) ) <_ ( 1 / ( B - A ) ) /\ ( 1 / ( B - A ) ) < ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) ) |
| 86 |
85
|
simprd |
|- ( ph -> ( 1 / ( B - A ) ) < ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) |
| 87 |
80 81 83 86
|
ltdiv2dd |
|- ( ph -> ( 1 / ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) < ( 1 / ( 1 / ( B - A ) ) ) ) |
| 88 |
17
|
recnd |
|- ( ph -> ( B - A ) e. CC ) |
| 89 |
88 20
|
recrecd |
|- ( ph -> ( 1 / ( 1 / ( B - A ) ) ) = ( B - A ) ) |
| 90 |
87 89
|
breqtrd |
|- ( ph -> ( 1 / ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) < ( B - A ) ) |
| 91 |
79 17 2 90
|
ltsub2dd |
|- ( ph -> ( B - ( B - A ) ) < ( B - ( 1 / ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) ) ) |
| 92 |
2
|
recnd |
|- ( ph -> B e. CC ) |
| 93 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 94 |
92 93
|
nncand |
|- ( ph -> ( B - ( B - A ) ) = A ) |
| 95 |
78
|
oveq2i |
|- ( B - ( 1 / ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) ) = ( B - ( 1 / M ) ) |
| 96 |
95
|
a1i |
|- ( ph -> ( B - ( 1 / ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) ) ) = ( B - ( 1 / M ) ) ) |
| 97 |
91 94 96
|
3brtr3d |
|- ( ph -> A < ( B - ( 1 / M ) ) ) |
| 98 |
97
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> A < ( B - ( 1 / M ) ) ) |
| 99 |
67 72
|
elrpd |
|- ( ph -> M e. RR+ ) |
| 100 |
99
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> M e. RR+ ) |
| 101 |
41 62
|
elrpd |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> j e. RR+ ) |
| 102 |
|
1red |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> 1 e. RR ) |
| 103 |
|
0le1 |
|- 0 <_ 1 |
| 104 |
103
|
a1i |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> 0 <_ 1 ) |
| 105 |
100 101 102 104 60
|
lediv2ad |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( 1 / j ) <_ ( 1 / M ) ) |
| 106 |
64 75 39 105
|
lesub2dd |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( B - ( 1 / M ) ) <_ ( B - ( 1 / j ) ) ) |
| 107 |
66 76 65 98 106
|
ltletrd |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> A < ( B - ( 1 / j ) ) ) |
| 108 |
101
|
rpreccld |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( 1 / j ) e. RR+ ) |
| 109 |
39 108
|
ltsubrpd |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( B - ( 1 / j ) ) < B ) |
| 110 |
36 38 65 107 109
|
eliood |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( B - ( 1 / j ) ) e. ( A (,) B ) ) |
| 111 |
34 110
|
ffvelcdmd |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( F ` ( B - ( 1 / j ) ) ) e. RR ) |
| 112 |
111 9
|
fmptd |
|- ( ph -> S : ( ZZ>= ` M ) --> RR ) |
| 113 |
1 2 3 4 5 6
|
dvbdfbdioo |
|- ( ph -> E. b e. RR A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b ) |
| 114 |
67
|
adantr |
|- ( ( ph /\ A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b ) -> M e. RR ) |
| 115 |
|
simpr |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> j e. ( ZZ>= ` M ) ) |
| 116 |
9
|
fvmpt2 |
|- ( ( j e. ( ZZ>= ` M ) /\ ( F ` ( B - ( 1 / j ) ) ) e. RR ) -> ( S ` j ) = ( F ` ( B - ( 1 / j ) ) ) ) |
| 117 |
115 111 116
|
syl2anc |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( S ` j ) = ( F ` ( B - ( 1 / j ) ) ) ) |
| 118 |
117
|
fveq2d |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( abs ` ( S ` j ) ) = ( abs ` ( F ` ( B - ( 1 / j ) ) ) ) ) |
| 119 |
118
|
adantlr |
|- ( ( ( ph /\ A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b ) /\ j e. ( ZZ>= ` M ) ) -> ( abs ` ( S ` j ) ) = ( abs ` ( F ` ( B - ( 1 / j ) ) ) ) ) |
| 120 |
|
simplr |
|- ( ( ( ph /\ A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b ) /\ j e. ( ZZ>= ` M ) ) -> A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b ) |
| 121 |
110
|
adantlr |
|- ( ( ( ph /\ A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b ) /\ j e. ( ZZ>= ` M ) ) -> ( B - ( 1 / j ) ) e. ( A (,) B ) ) |
| 122 |
|
2fveq3 |
|- ( x = ( B - ( 1 / j ) ) -> ( abs ` ( F ` x ) ) = ( abs ` ( F ` ( B - ( 1 / j ) ) ) ) ) |
| 123 |
122
|
breq1d |
|- ( x = ( B - ( 1 / j ) ) -> ( ( abs ` ( F ` x ) ) <_ b <-> ( abs ` ( F ` ( B - ( 1 / j ) ) ) ) <_ b ) ) |
| 124 |
123
|
rspccva |
|- ( ( A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b /\ ( B - ( 1 / j ) ) e. ( A (,) B ) ) -> ( abs ` ( F ` ( B - ( 1 / j ) ) ) ) <_ b ) |
| 125 |
120 121 124
|
syl2anc |
|- ( ( ( ph /\ A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b ) /\ j e. ( ZZ>= ` M ) ) -> ( abs ` ( F ` ( B - ( 1 / j ) ) ) ) <_ b ) |
| 126 |
119 125
|
eqbrtrd |
|- ( ( ( ph /\ A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b ) /\ j e. ( ZZ>= ` M ) ) -> ( abs ` ( S ` j ) ) <_ b ) |
| 127 |
126
|
a1d |
|- ( ( ( ph /\ A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b ) /\ j e. ( ZZ>= ` M ) ) -> ( M <_ j -> ( abs ` ( S ` j ) ) <_ b ) ) |
| 128 |
127
|
ralrimiva |
|- ( ( ph /\ A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b ) -> A. j e. ( ZZ>= ` M ) ( M <_ j -> ( abs ` ( S ` j ) ) <_ b ) ) |
| 129 |
|
breq1 |
|- ( k = M -> ( k <_ j <-> M <_ j ) ) |
| 130 |
129
|
imbi1d |
|- ( k = M -> ( ( k <_ j -> ( abs ` ( S ` j ) ) <_ b ) <-> ( M <_ j -> ( abs ` ( S ` j ) ) <_ b ) ) ) |
| 131 |
130
|
ralbidv |
|- ( k = M -> ( A. j e. ( ZZ>= ` M ) ( k <_ j -> ( abs ` ( S ` j ) ) <_ b ) <-> A. j e. ( ZZ>= ` M ) ( M <_ j -> ( abs ` ( S ` j ) ) <_ b ) ) ) |
| 132 |
131
|
rspcev |
|- ( ( M e. RR /\ A. j e. ( ZZ>= ` M ) ( M <_ j -> ( abs ` ( S ` j ) ) <_ b ) ) -> E. k e. RR A. j e. ( ZZ>= ` M ) ( k <_ j -> ( abs ` ( S ` j ) ) <_ b ) ) |
| 133 |
114 128 132
|
syl2anc |
|- ( ( ph /\ A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b ) -> E. k e. RR A. j e. ( ZZ>= ` M ) ( k <_ j -> ( abs ` ( S ` j ) ) <_ b ) ) |
| 134 |
133
|
ex |
|- ( ph -> ( A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b -> E. k e. RR A. j e. ( ZZ>= ` M ) ( k <_ j -> ( abs ` ( S ` j ) ) <_ b ) ) ) |
| 135 |
134
|
reximdv |
|- ( ph -> ( E. b e. RR A. x e. ( A (,) B ) ( abs ` ( F ` x ) ) <_ b -> E. b e. RR E. k e. RR A. j e. ( ZZ>= ` M ) ( k <_ j -> ( abs ` ( S ` j ) ) <_ b ) ) ) |
| 136 |
113 135
|
mpd |
|- ( ph -> E. b e. RR E. k e. RR A. j e. ( ZZ>= ` M ) ( k <_ j -> ( abs ` ( S ` j ) ) <_ b ) ) |
| 137 |
16 33 112 136
|
limsupre |
|- ( ph -> ( limsup ` S ) e. RR ) |
| 138 |
137
|
recnd |
|- ( ph -> ( limsup ` S ) e. CC ) |
| 139 |
|
eluzelre |
|- ( j e. ( ZZ>= ` N ) -> j e. RR ) |
| 140 |
139
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> j e. RR ) |
| 141 |
|
0red |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> 0 e. RR ) |
| 142 |
52
|
peano2zd |
|- ( ph -> ( ( |_ ` ( 1 / ( B - A ) ) ) + 1 ) e. ZZ ) |
| 143 |
8 142
|
eqeltrid |
|- ( ph -> M e. ZZ ) |
| 144 |
143
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> M e. ZZ ) |
| 145 |
144
|
zred |
|- ( ( ph /\ x e. RR+ ) -> M e. RR ) |
| 146 |
145
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> M e. RR ) |
| 147 |
72
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> 0 < M ) |
| 148 |
|
ioomidp |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( A + B ) / 2 ) e. ( A (,) B ) ) |
| 149 |
1 2 3 148
|
syl3anc |
|- ( ph -> ( ( A + B ) / 2 ) e. ( A (,) B ) ) |
| 150 |
|
ne0i |
|- ( ( ( A + B ) / 2 ) e. ( A (,) B ) -> ( A (,) B ) =/= (/) ) |
| 151 |
149 150
|
syl |
|- ( ph -> ( A (,) B ) =/= (/) ) |
| 152 |
|
ioossre |
|- ( A (,) B ) C_ RR |
| 153 |
152
|
a1i |
|- ( ph -> ( A (,) B ) C_ RR ) |
| 154 |
|
dvfre |
|- ( ( F : ( A (,) B ) --> RR /\ ( A (,) B ) C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
| 155 |
4 153 154
|
syl2anc |
|- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
| 156 |
5
|
feq2d |
|- ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> RR <-> ( RR _D F ) : ( A (,) B ) --> RR ) ) |
| 157 |
155 156
|
mpbid |
|- ( ph -> ( RR _D F ) : ( A (,) B ) --> RR ) |
| 158 |
157
|
ffvelcdmda |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. RR ) |
| 159 |
158
|
recnd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 160 |
159
|
abscld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( abs ` ( ( RR _D F ) ` x ) ) e. RR ) |
| 161 |
|
eqid |
|- ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) = ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) |
| 162 |
|
eqid |
|- sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) = sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) |
| 163 |
151 160 6 161 162
|
suprnmpt |
|- ( ph -> ( sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) e. RR /\ A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) ) ) |
| 164 |
163
|
simpld |
|- ( ph -> sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) e. RR ) |
| 165 |
7 164
|
eqeltrid |
|- ( ph -> Y e. RR ) |
| 166 |
165
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> Y e. RR ) |
| 167 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
| 168 |
167
|
rehalfcld |
|- ( x e. RR+ -> ( x / 2 ) e. RR ) |
| 169 |
168
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> ( x / 2 ) e. RR ) |
| 170 |
167
|
recnd |
|- ( x e. RR+ -> x e. CC ) |
| 171 |
170
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> x e. CC ) |
| 172 |
|
2cnd |
|- ( ( ph /\ x e. RR+ ) -> 2 e. CC ) |
| 173 |
|
rpne0 |
|- ( x e. RR+ -> x =/= 0 ) |
| 174 |
173
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> x =/= 0 ) |
| 175 |
|
2ne0 |
|- 2 =/= 0 |
| 176 |
175
|
a1i |
|- ( ( ph /\ x e. RR+ ) -> 2 =/= 0 ) |
| 177 |
171 172 174 176
|
divne0d |
|- ( ( ph /\ x e. RR+ ) -> ( x / 2 ) =/= 0 ) |
| 178 |
166 169 177
|
redivcld |
|- ( ( ph /\ x e. RR+ ) -> ( Y / ( x / 2 ) ) e. RR ) |
| 179 |
178
|
flcld |
|- ( ( ph /\ x e. RR+ ) -> ( |_ ` ( Y / ( x / 2 ) ) ) e. ZZ ) |
| 180 |
179
|
peano2zd |
|- ( ( ph /\ x e. RR+ ) -> ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) e. ZZ ) |
| 181 |
180 144
|
ifcld |
|- ( ( ph /\ x e. RR+ ) -> if ( M <_ ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , M ) e. ZZ ) |
| 182 |
11 181
|
eqeltrid |
|- ( ( ph /\ x e. RR+ ) -> N e. ZZ ) |
| 183 |
182
|
zred |
|- ( ( ph /\ x e. RR+ ) -> N e. RR ) |
| 184 |
183
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> N e. RR ) |
| 185 |
180
|
zred |
|- ( ( ph /\ x e. RR+ ) -> ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) e. RR ) |
| 186 |
|
max1 |
|- ( ( M e. RR /\ ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) e. RR ) -> M <_ if ( M <_ ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , M ) ) |
| 187 |
145 185 186
|
syl2anc |
|- ( ( ph /\ x e. RR+ ) -> M <_ if ( M <_ ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , M ) ) |
| 188 |
187 11
|
breqtrrdi |
|- ( ( ph /\ x e. RR+ ) -> M <_ N ) |
| 189 |
188
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> M <_ N ) |
| 190 |
|
eluzle |
|- ( j e. ( ZZ>= ` N ) -> N <_ j ) |
| 191 |
190
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> N <_ j ) |
| 192 |
146 184 140 189 191
|
letrd |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> M <_ j ) |
| 193 |
141 146 140 147 192
|
ltletrd |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> 0 < j ) |
| 194 |
193
|
gt0ne0d |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> j =/= 0 ) |
| 195 |
140 194
|
rereccld |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> ( 1 / j ) e. RR ) |
| 196 |
140 193
|
recgt0d |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> 0 < ( 1 / j ) ) |
| 197 |
195 196
|
elrpd |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) -> ( 1 / j ) e. RR+ ) |
| 198 |
197
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) -> ( 1 / j ) e. RR+ ) |
| 199 |
12
|
biimpi |
|- ( ch -> ( ( ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) /\ z e. ( A (,) B ) ) /\ ( abs ` ( z - B ) ) < ( 1 / j ) ) ) |
| 200 |
|
simp-5l |
|- ( ( ( ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) /\ z e. ( A (,) B ) ) /\ ( abs ` ( z - B ) ) < ( 1 / j ) ) -> ph ) |
| 201 |
199 200
|
syl |
|- ( ch -> ph ) |
| 202 |
201 4
|
syl |
|- ( ch -> F : ( A (,) B ) --> RR ) |
| 203 |
199
|
simplrd |
|- ( ch -> z e. ( A (,) B ) ) |
| 204 |
202 203
|
ffvelcdmd |
|- ( ch -> ( F ` z ) e. RR ) |
| 205 |
204
|
recnd |
|- ( ch -> ( F ` z ) e. CC ) |
| 206 |
201 112
|
syl |
|- ( ch -> S : ( ZZ>= ` M ) --> RR ) |
| 207 |
|
simp-5r |
|- ( ( ( ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) /\ z e. ( A (,) B ) ) /\ ( abs ` ( z - B ) ) < ( 1 / j ) ) -> x e. RR+ ) |
| 208 |
199 207
|
syl |
|- ( ch -> x e. RR+ ) |
| 209 |
|
eluz2 |
|- ( N e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ N e. ZZ /\ M <_ N ) ) |
| 210 |
144 182 188 209
|
syl3anbrc |
|- ( ( ph /\ x e. RR+ ) -> N e. ( ZZ>= ` M ) ) |
| 211 |
201 208 210
|
syl2anc |
|- ( ch -> N e. ( ZZ>= ` M ) ) |
| 212 |
|
uzss |
|- ( N e. ( ZZ>= ` M ) -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) |
| 213 |
211 212
|
syl |
|- ( ch -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) |
| 214 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) /\ z e. ( A (,) B ) ) /\ ( abs ` ( z - B ) ) < ( 1 / j ) ) -> j e. ( ZZ>= ` N ) ) |
| 215 |
199 214
|
syl |
|- ( ch -> j e. ( ZZ>= ` N ) ) |
| 216 |
213 215
|
sseldd |
|- ( ch -> j e. ( ZZ>= ` M ) ) |
| 217 |
206 216
|
ffvelcdmd |
|- ( ch -> ( S ` j ) e. RR ) |
| 218 |
217
|
recnd |
|- ( ch -> ( S ` j ) e. CC ) |
| 219 |
201 138
|
syl |
|- ( ch -> ( limsup ` S ) e. CC ) |
| 220 |
205 218 219
|
npncand |
|- ( ch -> ( ( ( F ` z ) - ( S ` j ) ) + ( ( S ` j ) - ( limsup ` S ) ) ) = ( ( F ` z ) - ( limsup ` S ) ) ) |
| 221 |
220
|
eqcomd |
|- ( ch -> ( ( F ` z ) - ( limsup ` S ) ) = ( ( ( F ` z ) - ( S ` j ) ) + ( ( S ` j ) - ( limsup ` S ) ) ) ) |
| 222 |
221
|
fveq2d |
|- ( ch -> ( abs ` ( ( F ` z ) - ( limsup ` S ) ) ) = ( abs ` ( ( ( F ` z ) - ( S ` j ) ) + ( ( S ` j ) - ( limsup ` S ) ) ) ) ) |
| 223 |
204 217
|
resubcld |
|- ( ch -> ( ( F ` z ) - ( S ` j ) ) e. RR ) |
| 224 |
201 137
|
syl |
|- ( ch -> ( limsup ` S ) e. RR ) |
| 225 |
217 224
|
resubcld |
|- ( ch -> ( ( S ` j ) - ( limsup ` S ) ) e. RR ) |
| 226 |
223 225
|
readdcld |
|- ( ch -> ( ( ( F ` z ) - ( S ` j ) ) + ( ( S ` j ) - ( limsup ` S ) ) ) e. RR ) |
| 227 |
226
|
recnd |
|- ( ch -> ( ( ( F ` z ) - ( S ` j ) ) + ( ( S ` j ) - ( limsup ` S ) ) ) e. CC ) |
| 228 |
227
|
abscld |
|- ( ch -> ( abs ` ( ( ( F ` z ) - ( S ` j ) ) + ( ( S ` j ) - ( limsup ` S ) ) ) ) e. RR ) |
| 229 |
223
|
recnd |
|- ( ch -> ( ( F ` z ) - ( S ` j ) ) e. CC ) |
| 230 |
229
|
abscld |
|- ( ch -> ( abs ` ( ( F ` z ) - ( S ` j ) ) ) e. RR ) |
| 231 |
225
|
recnd |
|- ( ch -> ( ( S ` j ) - ( limsup ` S ) ) e. CC ) |
| 232 |
231
|
abscld |
|- ( ch -> ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) e. RR ) |
| 233 |
230 232
|
readdcld |
|- ( ch -> ( ( abs ` ( ( F ` z ) - ( S ` j ) ) ) + ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) ) e. RR ) |
| 234 |
208
|
rpred |
|- ( ch -> x e. RR ) |
| 235 |
229 231
|
abstrid |
|- ( ch -> ( abs ` ( ( ( F ` z ) - ( S ` j ) ) + ( ( S ` j ) - ( limsup ` S ) ) ) ) <_ ( ( abs ` ( ( F ` z ) - ( S ` j ) ) ) + ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) ) ) |
| 236 |
234
|
rehalfcld |
|- ( ch -> ( x / 2 ) e. RR ) |
| 237 |
201 216 117
|
syl2anc |
|- ( ch -> ( S ` j ) = ( F ` ( B - ( 1 / j ) ) ) ) |
| 238 |
237
|
oveq2d |
|- ( ch -> ( ( F ` z ) - ( S ` j ) ) = ( ( F ` z ) - ( F ` ( B - ( 1 / j ) ) ) ) ) |
| 239 |
238
|
fveq2d |
|- ( ch -> ( abs ` ( ( F ` z ) - ( S ` j ) ) ) = ( abs ` ( ( F ` z ) - ( F ` ( B - ( 1 / j ) ) ) ) ) ) |
| 240 |
239 230
|
eqeltrrd |
|- ( ch -> ( abs ` ( ( F ` z ) - ( F ` ( B - ( 1 / j ) ) ) ) ) e. RR ) |
| 241 |
201 165
|
syl |
|- ( ch -> Y e. RR ) |
| 242 |
152 203
|
sselid |
|- ( ch -> z e. RR ) |
| 243 |
201 216 65
|
syl2anc |
|- ( ch -> ( B - ( 1 / j ) ) e. RR ) |
| 244 |
242 243
|
resubcld |
|- ( ch -> ( z - ( B - ( 1 / j ) ) ) e. RR ) |
| 245 |
241 244
|
remulcld |
|- ( ch -> ( Y x. ( z - ( B - ( 1 / j ) ) ) ) e. RR ) |
| 246 |
201 1
|
syl |
|- ( ch -> A e. RR ) |
| 247 |
201 2
|
syl |
|- ( ch -> B e. RR ) |
| 248 |
201 5
|
syl |
|- ( ch -> dom ( RR _D F ) = ( A (,) B ) ) |
| 249 |
163
|
simprd |
|- ( ph -> A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) ) |
| 250 |
7
|
breq2i |
|- ( ( abs ` ( ( RR _D F ) ` x ) ) <_ Y <-> ( abs ` ( ( RR _D F ) ` x ) ) <_ sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) ) |
| 251 |
250
|
ralbii |
|- ( A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ Y <-> A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) ) |
| 252 |
249 251
|
sylibr |
|- ( ph -> A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ Y ) |
| 253 |
201 252
|
syl |
|- ( ch -> A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ Y ) |
| 254 |
|
2fveq3 |
|- ( w = x -> ( abs ` ( ( RR _D F ) ` w ) ) = ( abs ` ( ( RR _D F ) ` x ) ) ) |
| 255 |
254
|
breq1d |
|- ( w = x -> ( ( abs ` ( ( RR _D F ) ` w ) ) <_ Y <-> ( abs ` ( ( RR _D F ) ` x ) ) <_ Y ) ) |
| 256 |
255
|
cbvralvw |
|- ( A. w e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` w ) ) <_ Y <-> A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ Y ) |
| 257 |
253 256
|
sylibr |
|- ( ch -> A. w e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` w ) ) <_ Y ) |
| 258 |
201 216 110
|
syl2anc |
|- ( ch -> ( B - ( 1 / j ) ) e. ( A (,) B ) ) |
| 259 |
243
|
rexrd |
|- ( ch -> ( B - ( 1 / j ) ) e. RR* ) |
| 260 |
201 37
|
syl |
|- ( ch -> B e. RR* ) |
| 261 |
15 216
|
sselid |
|- ( ch -> j e. RR ) |
| 262 |
201 216 63
|
syl2anc |
|- ( ch -> j =/= 0 ) |
| 263 |
261 262
|
rereccld |
|- ( ch -> ( 1 / j ) e. RR ) |
| 264 |
247 242
|
resubcld |
|- ( ch -> ( B - z ) e. RR ) |
| 265 |
242 247
|
resubcld |
|- ( ch -> ( z - B ) e. RR ) |
| 266 |
265
|
recnd |
|- ( ch -> ( z - B ) e. CC ) |
| 267 |
266
|
abscld |
|- ( ch -> ( abs ` ( z - B ) ) e. RR ) |
| 268 |
264
|
leabsd |
|- ( ch -> ( B - z ) <_ ( abs ` ( B - z ) ) ) |
| 269 |
201 92
|
syl |
|- ( ch -> B e. CC ) |
| 270 |
242
|
recnd |
|- ( ch -> z e. CC ) |
| 271 |
269 270
|
abssubd |
|- ( ch -> ( abs ` ( B - z ) ) = ( abs ` ( z - B ) ) ) |
| 272 |
268 271
|
breqtrd |
|- ( ch -> ( B - z ) <_ ( abs ` ( z - B ) ) ) |
| 273 |
199
|
simprd |
|- ( ch -> ( abs ` ( z - B ) ) < ( 1 / j ) ) |
| 274 |
264 267 263 272 273
|
lelttrd |
|- ( ch -> ( B - z ) < ( 1 / j ) ) |
| 275 |
247 242 263 274
|
ltsub23d |
|- ( ch -> ( B - ( 1 / j ) ) < z ) |
| 276 |
201 35
|
syl |
|- ( ch -> A e. RR* ) |
| 277 |
|
iooltub |
|- ( ( A e. RR* /\ B e. RR* /\ z e. ( A (,) B ) ) -> z < B ) |
| 278 |
276 260 203 277
|
syl3anc |
|- ( ch -> z < B ) |
| 279 |
259 260 242 275 278
|
eliood |
|- ( ch -> z e. ( ( B - ( 1 / j ) ) (,) B ) ) |
| 280 |
246 247 202 248 241 257 258 279
|
dvbdfbdioolem1 |
|- ( ch -> ( ( abs ` ( ( F ` z ) - ( F ` ( B - ( 1 / j ) ) ) ) ) <_ ( Y x. ( z - ( B - ( 1 / j ) ) ) ) /\ ( abs ` ( ( F ` z ) - ( F ` ( B - ( 1 / j ) ) ) ) ) <_ ( Y x. ( B - A ) ) ) ) |
| 281 |
280
|
simpld |
|- ( ch -> ( abs ` ( ( F ` z ) - ( F ` ( B - ( 1 / j ) ) ) ) ) <_ ( Y x. ( z - ( B - ( 1 / j ) ) ) ) ) |
| 282 |
201 216 64
|
syl2anc |
|- ( ch -> ( 1 / j ) e. RR ) |
| 283 |
241 282
|
remulcld |
|- ( ch -> ( Y x. ( 1 / j ) ) e. RR ) |
| 284 |
157 149
|
ffvelcdmd |
|- ( ph -> ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) e. RR ) |
| 285 |
284
|
recnd |
|- ( ph -> ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) e. CC ) |
| 286 |
285
|
abscld |
|- ( ph -> ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) e. RR ) |
| 287 |
285
|
absge0d |
|- ( ph -> 0 <_ ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) ) |
| 288 |
|
2fveq3 |
|- ( x = ( ( A + B ) / 2 ) -> ( abs ` ( ( RR _D F ) ` x ) ) = ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) ) |
| 289 |
7
|
eqcomi |
|- sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) = Y |
| 290 |
289
|
a1i |
|- ( x = ( ( A + B ) / 2 ) -> sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) = Y ) |
| 291 |
288 290
|
breq12d |
|- ( x = ( ( A + B ) / 2 ) -> ( ( abs ` ( ( RR _D F ) ` x ) ) <_ sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) <-> ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) <_ Y ) ) |
| 292 |
291
|
rspcva |
|- ( ( ( ( A + B ) / 2 ) e. ( A (,) B ) /\ A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) ) -> ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) <_ Y ) |
| 293 |
149 249 292
|
syl2anc |
|- ( ph -> ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) <_ Y ) |
| 294 |
22 286 165 287 293
|
letrd |
|- ( ph -> 0 <_ Y ) |
| 295 |
201 294
|
syl |
|- ( ch -> 0 <_ Y ) |
| 296 |
282
|
recnd |
|- ( ch -> ( 1 / j ) e. CC ) |
| 297 |
|
sub31 |
|- ( ( z e. CC /\ B e. CC /\ ( 1 / j ) e. CC ) -> ( z - ( B - ( 1 / j ) ) ) = ( ( 1 / j ) - ( B - z ) ) ) |
| 298 |
270 269 296 297
|
syl3anc |
|- ( ch -> ( z - ( B - ( 1 / j ) ) ) = ( ( 1 / j ) - ( B - z ) ) ) |
| 299 |
242 247
|
posdifd |
|- ( ch -> ( z < B <-> 0 < ( B - z ) ) ) |
| 300 |
278 299
|
mpbid |
|- ( ch -> 0 < ( B - z ) ) |
| 301 |
264 300
|
elrpd |
|- ( ch -> ( B - z ) e. RR+ ) |
| 302 |
282 301
|
ltsubrpd |
|- ( ch -> ( ( 1 / j ) - ( B - z ) ) < ( 1 / j ) ) |
| 303 |
298 302
|
eqbrtrd |
|- ( ch -> ( z - ( B - ( 1 / j ) ) ) < ( 1 / j ) ) |
| 304 |
244 282 303
|
ltled |
|- ( ch -> ( z - ( B - ( 1 / j ) ) ) <_ ( 1 / j ) ) |
| 305 |
244 282 241 295 304
|
lemul2ad |
|- ( ch -> ( Y x. ( z - ( B - ( 1 / j ) ) ) ) <_ ( Y x. ( 1 / j ) ) ) |
| 306 |
283
|
adantr |
|- ( ( ch /\ Y = 0 ) -> ( Y x. ( 1 / j ) ) e. RR ) |
| 307 |
236
|
adantr |
|- ( ( ch /\ Y = 0 ) -> ( x / 2 ) e. RR ) |
| 308 |
|
oveq1 |
|- ( Y = 0 -> ( Y x. ( 1 / j ) ) = ( 0 x. ( 1 / j ) ) ) |
| 309 |
296
|
mul02d |
|- ( ch -> ( 0 x. ( 1 / j ) ) = 0 ) |
| 310 |
308 309
|
sylan9eqr |
|- ( ( ch /\ Y = 0 ) -> ( Y x. ( 1 / j ) ) = 0 ) |
| 311 |
208
|
rphalfcld |
|- ( ch -> ( x / 2 ) e. RR+ ) |
| 312 |
311
|
rpgt0d |
|- ( ch -> 0 < ( x / 2 ) ) |
| 313 |
312
|
adantr |
|- ( ( ch /\ Y = 0 ) -> 0 < ( x / 2 ) ) |
| 314 |
310 313
|
eqbrtrd |
|- ( ( ch /\ Y = 0 ) -> ( Y x. ( 1 / j ) ) < ( x / 2 ) ) |
| 315 |
306 307 314
|
ltled |
|- ( ( ch /\ Y = 0 ) -> ( Y x. ( 1 / j ) ) <_ ( x / 2 ) ) |
| 316 |
241
|
adantr |
|- ( ( ch /\ -. Y = 0 ) -> Y e. RR ) |
| 317 |
295
|
adantr |
|- ( ( ch /\ -. Y = 0 ) -> 0 <_ Y ) |
| 318 |
|
neqne |
|- ( -. Y = 0 -> Y =/= 0 ) |
| 319 |
318
|
adantl |
|- ( ( ch /\ -. Y = 0 ) -> Y =/= 0 ) |
| 320 |
316 317 319
|
ne0gt0d |
|- ( ( ch /\ -. Y = 0 ) -> 0 < Y ) |
| 321 |
283
|
adantr |
|- ( ( ch /\ 0 < Y ) -> ( Y x. ( 1 / j ) ) e. RR ) |
| 322 |
15 211
|
sselid |
|- ( ch -> N e. RR ) |
| 323 |
|
0red |
|- ( ch -> 0 e. RR ) |
| 324 |
201 208 145
|
syl2anc |
|- ( ch -> M e. RR ) |
| 325 |
201 72
|
syl |
|- ( ch -> 0 < M ) |
| 326 |
201 208 188
|
syl2anc |
|- ( ch -> M <_ N ) |
| 327 |
323 324 322 325 326
|
ltletrd |
|- ( ch -> 0 < N ) |
| 328 |
327
|
gt0ne0d |
|- ( ch -> N =/= 0 ) |
| 329 |
322 328
|
rereccld |
|- ( ch -> ( 1 / N ) e. RR ) |
| 330 |
241 329
|
remulcld |
|- ( ch -> ( Y x. ( 1 / N ) ) e. RR ) |
| 331 |
330
|
adantr |
|- ( ( ch /\ 0 < Y ) -> ( Y x. ( 1 / N ) ) e. RR ) |
| 332 |
236
|
adantr |
|- ( ( ch /\ 0 < Y ) -> ( x / 2 ) e. RR ) |
| 333 |
282
|
adantr |
|- ( ( ch /\ 0 < Y ) -> ( 1 / j ) e. RR ) |
| 334 |
329
|
adantr |
|- ( ( ch /\ 0 < Y ) -> ( 1 / N ) e. RR ) |
| 335 |
241
|
adantr |
|- ( ( ch /\ 0 < Y ) -> Y e. RR ) |
| 336 |
295
|
adantr |
|- ( ( ch /\ 0 < Y ) -> 0 <_ Y ) |
| 337 |
322 327
|
elrpd |
|- ( ch -> N e. RR+ ) |
| 338 |
201 216 101
|
syl2anc |
|- ( ch -> j e. RR+ ) |
| 339 |
|
1red |
|- ( ch -> 1 e. RR ) |
| 340 |
103
|
a1i |
|- ( ch -> 0 <_ 1 ) |
| 341 |
215 190
|
syl |
|- ( ch -> N <_ j ) |
| 342 |
337 338 339 340 341
|
lediv2ad |
|- ( ch -> ( 1 / j ) <_ ( 1 / N ) ) |
| 343 |
342
|
adantr |
|- ( ( ch /\ 0 < Y ) -> ( 1 / j ) <_ ( 1 / N ) ) |
| 344 |
333 334 335 336 343
|
lemul2ad |
|- ( ( ch /\ 0 < Y ) -> ( Y x. ( 1 / j ) ) <_ ( Y x. ( 1 / N ) ) ) |
| 345 |
234
|
recnd |
|- ( ch -> x e. CC ) |
| 346 |
|
2cnd |
|- ( ch -> 2 e. CC ) |
| 347 |
208
|
rpne0d |
|- ( ch -> x =/= 0 ) |
| 348 |
175
|
a1i |
|- ( ch -> 2 =/= 0 ) |
| 349 |
345 346 347 348
|
divne0d |
|- ( ch -> ( x / 2 ) =/= 0 ) |
| 350 |
241 236 349
|
redivcld |
|- ( ch -> ( Y / ( x / 2 ) ) e. RR ) |
| 351 |
350
|
adantr |
|- ( ( ch /\ 0 < Y ) -> ( Y / ( x / 2 ) ) e. RR ) |
| 352 |
|
simpr |
|- ( ( ch /\ 0 < Y ) -> 0 < Y ) |
| 353 |
312
|
adantr |
|- ( ( ch /\ 0 < Y ) -> 0 < ( x / 2 ) ) |
| 354 |
335 332 352 353
|
divgt0d |
|- ( ( ch /\ 0 < Y ) -> 0 < ( Y / ( x / 2 ) ) ) |
| 355 |
351 354
|
elrpd |
|- ( ( ch /\ 0 < Y ) -> ( Y / ( x / 2 ) ) e. RR+ ) |
| 356 |
355
|
rprecred |
|- ( ( ch /\ 0 < Y ) -> ( 1 / ( Y / ( x / 2 ) ) ) e. RR ) |
| 357 |
337
|
adantr |
|- ( ( ch /\ 0 < Y ) -> N e. RR+ ) |
| 358 |
|
1red |
|- ( ( ch /\ 0 < Y ) -> 1 e. RR ) |
| 359 |
103
|
a1i |
|- ( ( ch /\ 0 < Y ) -> 0 <_ 1 ) |
| 360 |
350
|
flcld |
|- ( ch -> ( |_ ` ( Y / ( x / 2 ) ) ) e. ZZ ) |
| 361 |
360
|
peano2zd |
|- ( ch -> ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) e. ZZ ) |
| 362 |
361
|
zred |
|- ( ch -> ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) e. RR ) |
| 363 |
201 143
|
syl |
|- ( ch -> M e. ZZ ) |
| 364 |
361 363
|
ifcld |
|- ( ch -> if ( M <_ ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , M ) e. ZZ ) |
| 365 |
11 364
|
eqeltrid |
|- ( ch -> N e. ZZ ) |
| 366 |
365
|
zred |
|- ( ch -> N e. RR ) |
| 367 |
|
flltp1 |
|- ( ( Y / ( x / 2 ) ) e. RR -> ( Y / ( x / 2 ) ) < ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) ) |
| 368 |
350 367
|
syl |
|- ( ch -> ( Y / ( x / 2 ) ) < ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) ) |
| 369 |
201 67
|
syl |
|- ( ch -> M e. RR ) |
| 370 |
|
max2 |
|- ( ( M e. RR /\ ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) e. RR ) -> ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) <_ if ( M <_ ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , M ) ) |
| 371 |
369 362 370
|
syl2anc |
|- ( ch -> ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) <_ if ( M <_ ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) , M ) ) |
| 372 |
371 11
|
breqtrrdi |
|- ( ch -> ( ( |_ ` ( Y / ( x / 2 ) ) ) + 1 ) <_ N ) |
| 373 |
350 362 366 368 372
|
ltletrd |
|- ( ch -> ( Y / ( x / 2 ) ) < N ) |
| 374 |
350 322 373
|
ltled |
|- ( ch -> ( Y / ( x / 2 ) ) <_ N ) |
| 375 |
374
|
adantr |
|- ( ( ch /\ 0 < Y ) -> ( Y / ( x / 2 ) ) <_ N ) |
| 376 |
355 357 358 359 375
|
lediv2ad |
|- ( ( ch /\ 0 < Y ) -> ( 1 / N ) <_ ( 1 / ( Y / ( x / 2 ) ) ) ) |
| 377 |
334 356 335 336 376
|
lemul2ad |
|- ( ( ch /\ 0 < Y ) -> ( Y x. ( 1 / N ) ) <_ ( Y x. ( 1 / ( Y / ( x / 2 ) ) ) ) ) |
| 378 |
335
|
recnd |
|- ( ( ch /\ 0 < Y ) -> Y e. CC ) |
| 379 |
351
|
recnd |
|- ( ( ch /\ 0 < Y ) -> ( Y / ( x / 2 ) ) e. CC ) |
| 380 |
354
|
gt0ne0d |
|- ( ( ch /\ 0 < Y ) -> ( Y / ( x / 2 ) ) =/= 0 ) |
| 381 |
378 379 380
|
divrecd |
|- ( ( ch /\ 0 < Y ) -> ( Y / ( Y / ( x / 2 ) ) ) = ( Y x. ( 1 / ( Y / ( x / 2 ) ) ) ) ) |
| 382 |
332
|
recnd |
|- ( ( ch /\ 0 < Y ) -> ( x / 2 ) e. CC ) |
| 383 |
352
|
gt0ne0d |
|- ( ( ch /\ 0 < Y ) -> Y =/= 0 ) |
| 384 |
349
|
adantr |
|- ( ( ch /\ 0 < Y ) -> ( x / 2 ) =/= 0 ) |
| 385 |
378 382 383 384
|
ddcand |
|- ( ( ch /\ 0 < Y ) -> ( Y / ( Y / ( x / 2 ) ) ) = ( x / 2 ) ) |
| 386 |
381 385
|
eqtr3d |
|- ( ( ch /\ 0 < Y ) -> ( Y x. ( 1 / ( Y / ( x / 2 ) ) ) ) = ( x / 2 ) ) |
| 387 |
377 386
|
breqtrd |
|- ( ( ch /\ 0 < Y ) -> ( Y x. ( 1 / N ) ) <_ ( x / 2 ) ) |
| 388 |
321 331 332 344 387
|
letrd |
|- ( ( ch /\ 0 < Y ) -> ( Y x. ( 1 / j ) ) <_ ( x / 2 ) ) |
| 389 |
320 388
|
syldan |
|- ( ( ch /\ -. Y = 0 ) -> ( Y x. ( 1 / j ) ) <_ ( x / 2 ) ) |
| 390 |
315 389
|
pm2.61dan |
|- ( ch -> ( Y x. ( 1 / j ) ) <_ ( x / 2 ) ) |
| 391 |
245 283 236 305 390
|
letrd |
|- ( ch -> ( Y x. ( z - ( B - ( 1 / j ) ) ) ) <_ ( x / 2 ) ) |
| 392 |
240 245 236 281 391
|
letrd |
|- ( ch -> ( abs ` ( ( F ` z ) - ( F ` ( B - ( 1 / j ) ) ) ) ) <_ ( x / 2 ) ) |
| 393 |
239 392
|
eqbrtrd |
|- ( ch -> ( abs ` ( ( F ` z ) - ( S ` j ) ) ) <_ ( x / 2 ) ) |
| 394 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) /\ z e. ( A (,) B ) ) /\ ( abs ` ( z - B ) ) < ( 1 / j ) ) -> ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) |
| 395 |
199 394
|
syl |
|- ( ch -> ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) |
| 396 |
230 232 236 236 393 395
|
leltaddd |
|- ( ch -> ( ( abs ` ( ( F ` z ) - ( S ` j ) ) ) + ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) ) < ( ( x / 2 ) + ( x / 2 ) ) ) |
| 397 |
345
|
2halvesd |
|- ( ch -> ( ( x / 2 ) + ( x / 2 ) ) = x ) |
| 398 |
396 397
|
breqtrd |
|- ( ch -> ( ( abs ` ( ( F ` z ) - ( S ` j ) ) ) + ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) ) < x ) |
| 399 |
228 233 234 235 398
|
lelttrd |
|- ( ch -> ( abs ` ( ( ( F ` z ) - ( S ` j ) ) + ( ( S ` j ) - ( limsup ` S ) ) ) ) < x ) |
| 400 |
222 399
|
eqbrtrd |
|- ( ch -> ( abs ` ( ( F ` z ) - ( limsup ` S ) ) ) < x ) |
| 401 |
12 400
|
sylbir |
|- ( ( ( ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) /\ z e. ( A (,) B ) ) /\ ( abs ` ( z - B ) ) < ( 1 / j ) ) -> ( abs ` ( ( F ` z ) - ( limsup ` S ) ) ) < x ) |
| 402 |
401
|
adantrl |
|- ( ( ( ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) /\ z e. ( A (,) B ) ) /\ ( z =/= B /\ ( abs ` ( z - B ) ) < ( 1 / j ) ) ) -> ( abs ` ( ( F ` z ) - ( limsup ` S ) ) ) < x ) |
| 403 |
402
|
ex |
|- ( ( ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) /\ z e. ( A (,) B ) ) -> ( ( z =/= B /\ ( abs ` ( z - B ) ) < ( 1 / j ) ) -> ( abs ` ( ( F ` z ) - ( limsup ` S ) ) ) < x ) ) |
| 404 |
403
|
ralrimiva |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) -> A. z e. ( A (,) B ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < ( 1 / j ) ) -> ( abs ` ( ( F ` z ) - ( limsup ` S ) ) ) < x ) ) |
| 405 |
|
brimralrspcev |
|- ( ( ( 1 / j ) e. RR+ /\ A. z e. ( A (,) B ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < ( 1 / j ) ) -> ( abs ` ( ( F ` z ) - ( limsup ` S ) ) ) < x ) ) -> E. y e. RR+ A. z e. ( A (,) B ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - ( limsup ` S ) ) ) < x ) ) |
| 406 |
198 404 405
|
syl2anc |
|- ( ( ( ( ph /\ x e. RR+ ) /\ j e. ( ZZ>= ` N ) ) /\ ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) -> E. y e. RR+ A. z e. ( A (,) B ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - ( limsup ` S ) ) ) < x ) ) |
| 407 |
|
simpr |
|- ( ( ( ph /\ x e. RR+ ) /\ b <_ N ) -> b <_ N ) |
| 408 |
407
|
iftrued |
|- ( ( ( ph /\ x e. RR+ ) /\ b <_ N ) -> if ( b <_ N , N , b ) = N ) |
| 409 |
|
uzid |
|- ( N e. ZZ -> N e. ( ZZ>= ` N ) ) |
| 410 |
182 409
|
syl |
|- ( ( ph /\ x e. RR+ ) -> N e. ( ZZ>= ` N ) ) |
| 411 |
410
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ b <_ N ) -> N e. ( ZZ>= ` N ) ) |
| 412 |
408 411
|
eqeltrd |
|- ( ( ( ph /\ x e. RR+ ) /\ b <_ N ) -> if ( b <_ N , N , b ) e. ( ZZ>= ` N ) ) |
| 413 |
412
|
adantlr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ b <_ N ) -> if ( b <_ N , N , b ) e. ( ZZ>= ` N ) ) |
| 414 |
|
iffalse |
|- ( -. b <_ N -> if ( b <_ N , N , b ) = b ) |
| 415 |
414
|
adantl |
|- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ -. b <_ N ) -> if ( b <_ N , N , b ) = b ) |
| 416 |
182
|
ad2antrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ -. b <_ N ) -> N e. ZZ ) |
| 417 |
|
simplr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ -. b <_ N ) -> b e. ZZ ) |
| 418 |
416
|
zred |
|- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ -. b <_ N ) -> N e. RR ) |
| 419 |
417
|
zred |
|- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ -. b <_ N ) -> b e. RR ) |
| 420 |
|
simpr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ -. b <_ N ) -> -. b <_ N ) |
| 421 |
418 419
|
ltnled |
|- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ -. b <_ N ) -> ( N < b <-> -. b <_ N ) ) |
| 422 |
420 421
|
mpbird |
|- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ -. b <_ N ) -> N < b ) |
| 423 |
418 419 422
|
ltled |
|- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ -. b <_ N ) -> N <_ b ) |
| 424 |
|
eluz2 |
|- ( b e. ( ZZ>= ` N ) <-> ( N e. ZZ /\ b e. ZZ /\ N <_ b ) ) |
| 425 |
416 417 423 424
|
syl3anbrc |
|- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ -. b <_ N ) -> b e. ( ZZ>= ` N ) ) |
| 426 |
415 425
|
eqeltrd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ -. b <_ N ) -> if ( b <_ N , N , b ) e. ( ZZ>= ` N ) ) |
| 427 |
413 426
|
pm2.61dan |
|- ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) -> if ( b <_ N , N , b ) e. ( ZZ>= ` N ) ) |
| 428 |
427
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) -> if ( b <_ N , N , b ) e. ( ZZ>= ` N ) ) |
| 429 |
|
simpr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) -> A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) |
| 430 |
|
simpr |
|- ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) -> b e. ZZ ) |
| 431 |
182
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) -> N e. ZZ ) |
| 432 |
431 430
|
ifcld |
|- ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) -> if ( b <_ N , N , b ) e. ZZ ) |
| 433 |
430
|
zred |
|- ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) -> b e. RR ) |
| 434 |
431
|
zred |
|- ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) -> N e. RR ) |
| 435 |
|
max1 |
|- ( ( b e. RR /\ N e. RR ) -> b <_ if ( b <_ N , N , b ) ) |
| 436 |
433 434 435
|
syl2anc |
|- ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) -> b <_ if ( b <_ N , N , b ) ) |
| 437 |
|
eluz2 |
|- ( if ( b <_ N , N , b ) e. ( ZZ>= ` b ) <-> ( b e. ZZ /\ if ( b <_ N , N , b ) e. ZZ /\ b <_ if ( b <_ N , N , b ) ) ) |
| 438 |
430 432 436 437
|
syl3anbrc |
|- ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) -> if ( b <_ N , N , b ) e. ( ZZ>= ` b ) ) |
| 439 |
438
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) -> if ( b <_ N , N , b ) e. ( ZZ>= ` b ) ) |
| 440 |
|
fveq2 |
|- ( c = if ( b <_ N , N , b ) -> ( S ` c ) = ( S ` if ( b <_ N , N , b ) ) ) |
| 441 |
440
|
eleq1d |
|- ( c = if ( b <_ N , N , b ) -> ( ( S ` c ) e. CC <-> ( S ` if ( b <_ N , N , b ) ) e. CC ) ) |
| 442 |
440
|
fvoveq1d |
|- ( c = if ( b <_ N , N , b ) -> ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) = ( abs ` ( ( S ` if ( b <_ N , N , b ) ) - ( limsup ` S ) ) ) ) |
| 443 |
442
|
breq1d |
|- ( c = if ( b <_ N , N , b ) -> ( ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) <-> ( abs ` ( ( S ` if ( b <_ N , N , b ) ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) |
| 444 |
441 443
|
anbi12d |
|- ( c = if ( b <_ N , N , b ) -> ( ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) <-> ( ( S ` if ( b <_ N , N , b ) ) e. CC /\ ( abs ` ( ( S ` if ( b <_ N , N , b ) ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) ) |
| 445 |
444
|
rspccva |
|- ( ( A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) /\ if ( b <_ N , N , b ) e. ( ZZ>= ` b ) ) -> ( ( S ` if ( b <_ N , N , b ) ) e. CC /\ ( abs ` ( ( S ` if ( b <_ N , N , b ) ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) |
| 446 |
429 439 445
|
syl2anc |
|- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) -> ( ( S ` if ( b <_ N , N , b ) ) e. CC /\ ( abs ` ( ( S ` if ( b <_ N , N , b ) ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) |
| 447 |
446
|
simprd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) -> ( abs ` ( ( S ` if ( b <_ N , N , b ) ) - ( limsup ` S ) ) ) < ( x / 2 ) ) |
| 448 |
|
fveq2 |
|- ( j = if ( b <_ N , N , b ) -> ( S ` j ) = ( S ` if ( b <_ N , N , b ) ) ) |
| 449 |
448
|
fvoveq1d |
|- ( j = if ( b <_ N , N , b ) -> ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) = ( abs ` ( ( S ` if ( b <_ N , N , b ) ) - ( limsup ` S ) ) ) ) |
| 450 |
449
|
breq1d |
|- ( j = if ( b <_ N , N , b ) -> ( ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) <-> ( abs ` ( ( S ` if ( b <_ N , N , b ) ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) |
| 451 |
450
|
rspcev |
|- ( ( if ( b <_ N , N , b ) e. ( ZZ>= ` N ) /\ ( abs ` ( ( S ` if ( b <_ N , N , b ) ) - ( limsup ` S ) ) ) < ( x / 2 ) ) -> E. j e. ( ZZ>= ` N ) ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) |
| 452 |
428 447 451
|
syl2anc |
|- ( ( ( ( ph /\ x e. RR+ ) /\ b e. ZZ ) /\ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) -> E. j e. ( ZZ>= ` N ) ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) |
| 453 |
|
ax-resscn |
|- RR C_ CC |
| 454 |
453
|
a1i |
|- ( ph -> RR C_ CC ) |
| 455 |
4 454
|
fssd |
|- ( ph -> F : ( A (,) B ) --> CC ) |
| 456 |
|
dvcn |
|- ( ( ( RR C_ CC /\ F : ( A (,) B ) --> CC /\ ( A (,) B ) C_ RR ) /\ dom ( RR _D F ) = ( A (,) B ) ) -> F e. ( ( A (,) B ) -cn-> CC ) ) |
| 457 |
454 455 153 5 456
|
syl31anc |
|- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
| 458 |
|
cncfcdm |
|- ( ( RR C_ CC /\ F e. ( ( A (,) B ) -cn-> CC ) ) -> ( F e. ( ( A (,) B ) -cn-> RR ) <-> F : ( A (,) B ) --> RR ) ) |
| 459 |
454 457 458
|
syl2anc |
|- ( ph -> ( F e. ( ( A (,) B ) -cn-> RR ) <-> F : ( A (,) B ) --> RR ) ) |
| 460 |
4 459
|
mpbird |
|- ( ph -> F e. ( ( A (,) B ) -cn-> RR ) ) |
| 461 |
110 10
|
fmptd |
|- ( ph -> R : ( ZZ>= ` M ) --> ( A (,) B ) ) |
| 462 |
|
eqid |
|- ( j e. ( ZZ>= ` M ) |-> ( F ` ( R ` j ) ) ) = ( j e. ( ZZ>= ` M ) |-> ( F ` ( R ` j ) ) ) |
| 463 |
|
climrel |
|- Rel ~~> |
| 464 |
463
|
a1i |
|- ( ph -> Rel ~~> ) |
| 465 |
|
fvex |
|- ( ZZ>= ` M ) e. _V |
| 466 |
465
|
mptex |
|- ( j e. ( ZZ>= ` M ) |-> B ) e. _V |
| 467 |
466
|
a1i |
|- ( ph -> ( j e. ( ZZ>= ` M ) |-> B ) e. _V ) |
| 468 |
|
eqidd |
|- ( ( ph /\ m e. ( ZZ>= ` M ) ) -> ( j e. ( ZZ>= ` M ) |-> B ) = ( j e. ( ZZ>= ` M ) |-> B ) ) |
| 469 |
|
eqidd |
|- ( ( ( ph /\ m e. ( ZZ>= ` M ) ) /\ j = m ) -> B = B ) |
| 470 |
|
simpr |
|- ( ( ph /\ m e. ( ZZ>= ` M ) ) -> m e. ( ZZ>= ` M ) ) |
| 471 |
2
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` M ) ) -> B e. RR ) |
| 472 |
468 469 470 471
|
fvmptd |
|- ( ( ph /\ m e. ( ZZ>= ` M ) ) -> ( ( j e. ( ZZ>= ` M ) |-> B ) ` m ) = B ) |
| 473 |
31 30 467 92 472
|
climconst |
|- ( ph -> ( j e. ( ZZ>= ` M ) |-> B ) ~~> B ) |
| 474 |
465
|
mptex |
|- ( j e. ( ZZ>= ` M ) |-> ( B - ( 1 / j ) ) ) e. _V |
| 475 |
10 474
|
eqeltri |
|- R e. _V |
| 476 |
475
|
a1i |
|- ( ph -> R e. _V ) |
| 477 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 478 |
|
elnnnn0b |
|- ( M e. NN <-> ( M e. NN0 /\ 0 < M ) ) |
| 479 |
29 72 478
|
sylanbrc |
|- ( ph -> M e. NN ) |
| 480 |
|
divcnvg |
|- ( ( 1 e. CC /\ M e. NN ) -> ( j e. ( ZZ>= ` M ) |-> ( 1 / j ) ) ~~> 0 ) |
| 481 |
477 479 480
|
syl2anc |
|- ( ph -> ( j e. ( ZZ>= ` M ) |-> ( 1 / j ) ) ~~> 0 ) |
| 482 |
|
eqidd |
|- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> ( j e. ( ZZ>= ` M ) |-> B ) = ( j e. ( ZZ>= ` M ) |-> B ) ) |
| 483 |
|
eqidd |
|- ( ( ( ph /\ i e. ( ZZ>= ` M ) ) /\ j = i ) -> B = B ) |
| 484 |
|
simpr |
|- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> i e. ( ZZ>= ` M ) ) |
| 485 |
2
|
adantr |
|- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> B e. RR ) |
| 486 |
482 483 484 485
|
fvmptd |
|- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> ( ( j e. ( ZZ>= ` M ) |-> B ) ` i ) = B ) |
| 487 |
486 485
|
eqeltrd |
|- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> ( ( j e. ( ZZ>= ` M ) |-> B ) ` i ) e. RR ) |
| 488 |
487
|
recnd |
|- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> ( ( j e. ( ZZ>= ` M ) |-> B ) ` i ) e. CC ) |
| 489 |
|
eqidd |
|- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> ( j e. ( ZZ>= ` M ) |-> ( 1 / j ) ) = ( j e. ( ZZ>= ` M ) |-> ( 1 / j ) ) ) |
| 490 |
|
oveq2 |
|- ( j = i -> ( 1 / j ) = ( 1 / i ) ) |
| 491 |
490
|
adantl |
|- ( ( ( ph /\ i e. ( ZZ>= ` M ) ) /\ j = i ) -> ( 1 / j ) = ( 1 / i ) ) |
| 492 |
15 484
|
sselid |
|- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> i e. RR ) |
| 493 |
|
0red |
|- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> 0 e. RR ) |
| 494 |
67
|
adantr |
|- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> M e. RR ) |
| 495 |
72
|
adantr |
|- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> 0 < M ) |
| 496 |
|
eluzle |
|- ( i e. ( ZZ>= ` M ) -> M <_ i ) |
| 497 |
496
|
adantl |
|- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> M <_ i ) |
| 498 |
493 494 492 495 497
|
ltletrd |
|- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> 0 < i ) |
| 499 |
498
|
gt0ne0d |
|- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> i =/= 0 ) |
| 500 |
492 499
|
rereccld |
|- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> ( 1 / i ) e. RR ) |
| 501 |
489 491 484 500
|
fvmptd |
|- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> ( ( j e. ( ZZ>= ` M ) |-> ( 1 / j ) ) ` i ) = ( 1 / i ) ) |
| 502 |
492
|
recnd |
|- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> i e. CC ) |
| 503 |
502 499
|
reccld |
|- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> ( 1 / i ) e. CC ) |
| 504 |
501 503
|
eqeltrd |
|- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> ( ( j e. ( ZZ>= ` M ) |-> ( 1 / j ) ) ` i ) e. CC ) |
| 505 |
490
|
oveq2d |
|- ( j = i -> ( B - ( 1 / j ) ) = ( B - ( 1 / i ) ) ) |
| 506 |
|
ovex |
|- ( B - ( 1 / i ) ) e. _V |
| 507 |
505 10 506
|
fvmpt |
|- ( i e. ( ZZ>= ` M ) -> ( R ` i ) = ( B - ( 1 / i ) ) ) |
| 508 |
507
|
adantl |
|- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> ( R ` i ) = ( B - ( 1 / i ) ) ) |
| 509 |
486 501
|
oveq12d |
|- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> ( ( ( j e. ( ZZ>= ` M ) |-> B ) ` i ) - ( ( j e. ( ZZ>= ` M ) |-> ( 1 / j ) ) ` i ) ) = ( B - ( 1 / i ) ) ) |
| 510 |
508 509
|
eqtr4d |
|- ( ( ph /\ i e. ( ZZ>= ` M ) ) -> ( R ` i ) = ( ( ( j e. ( ZZ>= ` M ) |-> B ) ` i ) - ( ( j e. ( ZZ>= ` M ) |-> ( 1 / j ) ) ` i ) ) ) |
| 511 |
31 30 473 476 481 488 504 510
|
climsub |
|- ( ph -> R ~~> ( B - 0 ) ) |
| 512 |
92
|
subid1d |
|- ( ph -> ( B - 0 ) = B ) |
| 513 |
511 512
|
breqtrd |
|- ( ph -> R ~~> B ) |
| 514 |
|
releldm |
|- ( ( Rel ~~> /\ R ~~> B ) -> R e. dom ~~> ) |
| 515 |
464 513 514
|
syl2anc |
|- ( ph -> R e. dom ~~> ) |
| 516 |
|
fveq2 |
|- ( l = k -> ( ZZ>= ` l ) = ( ZZ>= ` k ) ) |
| 517 |
|
fveq2 |
|- ( l = k -> ( R ` l ) = ( R ` k ) ) |
| 518 |
517
|
oveq2d |
|- ( l = k -> ( ( R ` h ) - ( R ` l ) ) = ( ( R ` h ) - ( R ` k ) ) ) |
| 519 |
518
|
fveq2d |
|- ( l = k -> ( abs ` ( ( R ` h ) - ( R ` l ) ) ) = ( abs ` ( ( R ` h ) - ( R ` k ) ) ) ) |
| 520 |
519
|
breq1d |
|- ( l = k -> ( ( abs ` ( ( R ` h ) - ( R ` l ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) <-> ( abs ` ( ( R ` h ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) ) |
| 521 |
516 520
|
raleqbidv |
|- ( l = k -> ( A. h e. ( ZZ>= ` l ) ( abs ` ( ( R ` h ) - ( R ` l ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) <-> A. h e. ( ZZ>= ` k ) ( abs ` ( ( R ` h ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) ) |
| 522 |
521
|
cbvrabv |
|- { l e. ( ZZ>= ` M ) | A. h e. ( ZZ>= ` l ) ( abs ` ( ( R ` h ) - ( R ` l ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } = { k e. ( ZZ>= ` M ) | A. h e. ( ZZ>= ` k ) ( abs ` ( ( R ` h ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } |
| 523 |
|
fveq2 |
|- ( h = i -> ( R ` h ) = ( R ` i ) ) |
| 524 |
523
|
fvoveq1d |
|- ( h = i -> ( abs ` ( ( R ` h ) - ( R ` k ) ) ) = ( abs ` ( ( R ` i ) - ( R ` k ) ) ) ) |
| 525 |
524
|
breq1d |
|- ( h = i -> ( ( abs ` ( ( R ` h ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) <-> ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) ) |
| 526 |
525
|
cbvralvw |
|- ( A. h e. ( ZZ>= ` k ) ( abs ` ( ( R ` h ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) <-> A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) |
| 527 |
526
|
rgenw |
|- A. k e. ( ZZ>= ` M ) ( A. h e. ( ZZ>= ` k ) ( abs ` ( ( R ` h ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) <-> A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) |
| 528 |
|
rabbi |
|- ( A. k e. ( ZZ>= ` M ) ( A. h e. ( ZZ>= ` k ) ( abs ` ( ( R ` h ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) <-> A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) <-> { k e. ( ZZ>= ` M ) | A. h e. ( ZZ>= ` k ) ( abs ` ( ( R ` h ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } = { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } ) |
| 529 |
527 528
|
mpbi |
|- { k e. ( ZZ>= ` M ) | A. h e. ( ZZ>= ` k ) ( abs ` ( ( R ` h ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } = { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } |
| 530 |
522 529
|
eqtri |
|- { l e. ( ZZ>= ` M ) | A. h e. ( ZZ>= ` l ) ( abs ` ( ( R ` h ) - ( R ` l ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } = { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } |
| 531 |
530
|
infeq1i |
|- inf ( { l e. ( ZZ>= ` M ) | A. h e. ( ZZ>= ` l ) ( abs ` ( ( R ` h ) - ( R ` l ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } , RR , < ) = inf ( { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } , RR , < ) |
| 532 |
1 2 3 460 5 6 30 461 462 515 531
|
ioodvbdlimc1lem1 |
|- ( ph -> ( j e. ( ZZ>= ` M ) |-> ( F ` ( R ` j ) ) ) ~~> ( limsup ` ( j e. ( ZZ>= ` M ) |-> ( F ` ( R ` j ) ) ) ) ) |
| 533 |
10
|
fvmpt2 |
|- ( ( j e. ( ZZ>= ` M ) /\ ( B - ( 1 / j ) ) e. RR ) -> ( R ` j ) = ( B - ( 1 / j ) ) ) |
| 534 |
115 65 533
|
syl2anc |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( R ` j ) = ( B - ( 1 / j ) ) ) |
| 535 |
534
|
eqcomd |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( B - ( 1 / j ) ) = ( R ` j ) ) |
| 536 |
535
|
fveq2d |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( F ` ( B - ( 1 / j ) ) ) = ( F ` ( R ` j ) ) ) |
| 537 |
536
|
mpteq2dva |
|- ( ph -> ( j e. ( ZZ>= ` M ) |-> ( F ` ( B - ( 1 / j ) ) ) ) = ( j e. ( ZZ>= ` M ) |-> ( F ` ( R ` j ) ) ) ) |
| 538 |
9 537
|
eqtrid |
|- ( ph -> S = ( j e. ( ZZ>= ` M ) |-> ( F ` ( R ` j ) ) ) ) |
| 539 |
538
|
fveq2d |
|- ( ph -> ( limsup ` S ) = ( limsup ` ( j e. ( ZZ>= ` M ) |-> ( F ` ( R ` j ) ) ) ) ) |
| 540 |
532 538 539
|
3brtr4d |
|- ( ph -> S ~~> ( limsup ` S ) ) |
| 541 |
465
|
mptex |
|- ( j e. ( ZZ>= ` M ) |-> ( F ` ( B - ( 1 / j ) ) ) ) e. _V |
| 542 |
9 541
|
eqeltri |
|- S e. _V |
| 543 |
542
|
a1i |
|- ( ph -> S e. _V ) |
| 544 |
|
eqidd |
|- ( ( ph /\ c e. ZZ ) -> ( S ` c ) = ( S ` c ) ) |
| 545 |
543 544
|
clim |
|- ( ph -> ( S ~~> ( limsup ` S ) <-> ( ( limsup ` S ) e. CC /\ A. a e. RR+ E. b e. ZZ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < a ) ) ) ) |
| 546 |
540 545
|
mpbid |
|- ( ph -> ( ( limsup ` S ) e. CC /\ A. a e. RR+ E. b e. ZZ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < a ) ) ) |
| 547 |
546
|
simprd |
|- ( ph -> A. a e. RR+ E. b e. ZZ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < a ) ) |
| 548 |
547
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> A. a e. RR+ E. b e. ZZ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < a ) ) |
| 549 |
|
simpr |
|- ( ( ph /\ x e. RR+ ) -> x e. RR+ ) |
| 550 |
549
|
rphalfcld |
|- ( ( ph /\ x e. RR+ ) -> ( x / 2 ) e. RR+ ) |
| 551 |
|
breq2 |
|- ( a = ( x / 2 ) -> ( ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < a <-> ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) |
| 552 |
551
|
anbi2d |
|- ( a = ( x / 2 ) -> ( ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < a ) <-> ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) ) |
| 553 |
552
|
rexralbidv |
|- ( a = ( x / 2 ) -> ( E. b e. ZZ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < a ) <-> E. b e. ZZ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) ) |
| 554 |
553
|
rspccva |
|- ( ( A. a e. RR+ E. b e. ZZ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < a ) /\ ( x / 2 ) e. RR+ ) -> E. b e. ZZ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) |
| 555 |
548 550 554
|
syl2anc |
|- ( ( ph /\ x e. RR+ ) -> E. b e. ZZ A. c e. ( ZZ>= ` b ) ( ( S ` c ) e. CC /\ ( abs ` ( ( S ` c ) - ( limsup ` S ) ) ) < ( x / 2 ) ) ) |
| 556 |
452 555
|
r19.29a |
|- ( ( ph /\ x e. RR+ ) -> E. j e. ( ZZ>= ` N ) ( abs ` ( ( S ` j ) - ( limsup ` S ) ) ) < ( x / 2 ) ) |
| 557 |
406 556
|
r19.29a |
|- ( ( ph /\ x e. RR+ ) -> E. y e. RR+ A. z e. ( A (,) B ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - ( limsup ` S ) ) ) < x ) ) |
| 558 |
557
|
ralrimiva |
|- ( ph -> A. x e. RR+ E. y e. RR+ A. z e. ( A (,) B ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - ( limsup ` S ) ) ) < x ) ) |
| 559 |
|
ioosscn |
|- ( A (,) B ) C_ CC |
| 560 |
559
|
a1i |
|- ( ph -> ( A (,) B ) C_ CC ) |
| 561 |
455 560 92
|
ellimc3 |
|- ( ph -> ( ( limsup ` S ) e. ( F limCC B ) <-> ( ( limsup ` S ) e. CC /\ A. x e. RR+ E. y e. RR+ A. z e. ( A (,) B ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - ( limsup ` S ) ) ) < x ) ) ) ) |
| 562 |
138 558 561
|
mpbir2and |
|- ( ph -> ( limsup ` S ) e. ( F limCC B ) ) |