| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ioodvbdlimc2lem.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
ioodvbdlimc2lem.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
ioodvbdlimc2lem.altb |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
| 4 |
|
ioodvbdlimc2lem.f |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 5 |
|
ioodvbdlimc2lem.dmdv |
⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
| 6 |
|
ioodvbdlimc2lem.dvbd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑦 ) |
| 7 |
|
ioodvbdlimc2lem.y |
⊢ 𝑌 = sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) |
| 8 |
|
ioodvbdlimc2lem.m |
⊢ 𝑀 = ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) |
| 9 |
|
ioodvbdlimc2lem.s |
⊢ 𝑆 = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) |
| 10 |
|
ioodvbdlimc2lem.r |
⊢ 𝑅 = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐵 − ( 1 / 𝑗 ) ) ) |
| 11 |
|
ioodvbdlimc2lem.n |
⊢ 𝑁 = if ( 𝑀 ≤ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , 𝑀 ) |
| 12 |
|
ioodvbdlimc2lem.ch |
⊢ ( 𝜒 ↔ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) ) |
| 13 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
| 14 |
|
zssre |
⊢ ℤ ⊆ ℝ |
| 15 |
13 14
|
sstri |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ ) |
| 17 |
2 1
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 18 |
1 2
|
posdifd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
| 19 |
3 18
|
mpbid |
⊢ ( 𝜑 → 0 < ( 𝐵 − 𝐴 ) ) |
| 20 |
19
|
gt0ne0d |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≠ 0 ) |
| 21 |
17 20
|
rereccld |
⊢ ( 𝜑 → ( 1 / ( 𝐵 − 𝐴 ) ) ∈ ℝ ) |
| 22 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 23 |
17 19
|
recgt0d |
⊢ ( 𝜑 → 0 < ( 1 / ( 𝐵 − 𝐴 ) ) ) |
| 24 |
22 21 23
|
ltled |
⊢ ( 𝜑 → 0 ≤ ( 1 / ( 𝐵 − 𝐴 ) ) ) |
| 25 |
|
flge0nn0 |
⊢ ( ( ( 1 / ( 𝐵 − 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 1 / ( 𝐵 − 𝐴 ) ) ) → ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) ∈ ℕ0 ) |
| 26 |
21 24 25
|
syl2anc |
⊢ ( 𝜑 → ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) ∈ ℕ0 ) |
| 27 |
|
peano2nn0 |
⊢ ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ∈ ℕ0 ) |
| 28 |
26 27
|
syl |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ∈ ℕ0 ) |
| 29 |
8 28
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 30 |
29
|
nn0zd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 31 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) |
| 32 |
31
|
uzsup |
⊢ ( 𝑀 ∈ ℤ → sup ( ( ℤ≥ ‘ 𝑀 ) , ℝ* , < ) = +∞ ) |
| 33 |
30 32
|
syl |
⊢ ( 𝜑 → sup ( ( ℤ≥ ‘ 𝑀 ) , ℝ* , < ) = +∞ ) |
| 34 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 35 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℝ* ) |
| 37 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐵 ∈ ℝ* ) |
| 39 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐵 ∈ ℝ ) |
| 40 |
|
eluzelre |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℝ ) |
| 41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑗 ∈ ℝ ) |
| 42 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 ∈ ℝ ) |
| 43 |
|
0red |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 0 ∈ ℝ ) |
| 44 |
|
1red |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 1 ∈ ℝ ) |
| 45 |
43 44
|
readdcld |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 0 + 1 ) ∈ ℝ ) |
| 46 |
45
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 0 + 1 ) ∈ ℝ ) |
| 47 |
43
|
ltp1d |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 0 < ( 0 + 1 ) ) |
| 48 |
47
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 < ( 0 + 1 ) ) |
| 49 |
|
eluzel2 |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 50 |
49
|
zred |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℝ ) |
| 51 |
50
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℝ ) |
| 52 |
21
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) ∈ ℤ ) |
| 53 |
52
|
zred |
⊢ ( 𝜑 → ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) ∈ ℝ ) |
| 54 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 55 |
26
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) ) |
| 56 |
22 53 54 55
|
leadd1dd |
⊢ ( 𝜑 → ( 0 + 1 ) ≤ ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) |
| 57 |
56 8
|
breqtrrdi |
⊢ ( 𝜑 → ( 0 + 1 ) ≤ 𝑀 ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 0 + 1 ) ≤ 𝑀 ) |
| 59 |
|
eluzle |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑗 ) |
| 60 |
59
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ≤ 𝑗 ) |
| 61 |
46 51 41 58 60
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 0 + 1 ) ≤ 𝑗 ) |
| 62 |
42 46 41 48 61
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 < 𝑗 ) |
| 63 |
62
|
gt0ne0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑗 ≠ 0 ) |
| 64 |
41 63
|
rereccld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 / 𝑗 ) ∈ ℝ ) |
| 65 |
39 64
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐵 − ( 1 / 𝑗 ) ) ∈ ℝ ) |
| 66 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℝ ) |
| 67 |
29
|
nn0red |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 68 |
22 54
|
readdcld |
⊢ ( 𝜑 → ( 0 + 1 ) ∈ ℝ ) |
| 69 |
53 54
|
readdcld |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ∈ ℝ ) |
| 70 |
22
|
ltp1d |
⊢ ( 𝜑 → 0 < ( 0 + 1 ) ) |
| 71 |
22 68 69 70 56
|
ltletrd |
⊢ ( 𝜑 → 0 < ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) |
| 72 |
71 8
|
breqtrrdi |
⊢ ( 𝜑 → 0 < 𝑀 ) |
| 73 |
72
|
gt0ne0d |
⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
| 74 |
67 73
|
rereccld |
⊢ ( 𝜑 → ( 1 / 𝑀 ) ∈ ℝ ) |
| 75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 / 𝑀 ) ∈ ℝ ) |
| 76 |
39 75
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐵 − ( 1 / 𝑀 ) ) ∈ ℝ ) |
| 77 |
8
|
eqcomi |
⊢ ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) = 𝑀 |
| 78 |
77
|
oveq2i |
⊢ ( 1 / ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) = ( 1 / 𝑀 ) |
| 79 |
78 74
|
eqeltrid |
⊢ ( 𝜑 → ( 1 / ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ∈ ℝ ) |
| 80 |
21 23
|
elrpd |
⊢ ( 𝜑 → ( 1 / ( 𝐵 − 𝐴 ) ) ∈ ℝ+ ) |
| 81 |
69 71
|
elrpd |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ∈ ℝ+ ) |
| 82 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 83 |
82
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
| 84 |
|
fllelt |
⊢ ( ( 1 / ( 𝐵 − 𝐴 ) ) ∈ ℝ → ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) ≤ ( 1 / ( 𝐵 − 𝐴 ) ) ∧ ( 1 / ( 𝐵 − 𝐴 ) ) < ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ) |
| 85 |
21 84
|
syl |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) ≤ ( 1 / ( 𝐵 − 𝐴 ) ) ∧ ( 1 / ( 𝐵 − 𝐴 ) ) < ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ) |
| 86 |
85
|
simprd |
⊢ ( 𝜑 → ( 1 / ( 𝐵 − 𝐴 ) ) < ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) |
| 87 |
80 81 83 86
|
ltdiv2dd |
⊢ ( 𝜑 → ( 1 / ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) < ( 1 / ( 1 / ( 𝐵 − 𝐴 ) ) ) ) |
| 88 |
17
|
recnd |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℂ ) |
| 89 |
88 20
|
recrecd |
⊢ ( 𝜑 → ( 1 / ( 1 / ( 𝐵 − 𝐴 ) ) ) = ( 𝐵 − 𝐴 ) ) |
| 90 |
87 89
|
breqtrd |
⊢ ( 𝜑 → ( 1 / ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) < ( 𝐵 − 𝐴 ) ) |
| 91 |
79 17 2 90
|
ltsub2dd |
⊢ ( 𝜑 → ( 𝐵 − ( 𝐵 − 𝐴 ) ) < ( 𝐵 − ( 1 / ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ) ) |
| 92 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 93 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 94 |
92 93
|
nncand |
⊢ ( 𝜑 → ( 𝐵 − ( 𝐵 − 𝐴 ) ) = 𝐴 ) |
| 95 |
78
|
oveq2i |
⊢ ( 𝐵 − ( 1 / ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ) = ( 𝐵 − ( 1 / 𝑀 ) ) |
| 96 |
95
|
a1i |
⊢ ( 𝜑 → ( 𝐵 − ( 1 / ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ) ) = ( 𝐵 − ( 1 / 𝑀 ) ) ) |
| 97 |
91 94 96
|
3brtr3d |
⊢ ( 𝜑 → 𝐴 < ( 𝐵 − ( 1 / 𝑀 ) ) ) |
| 98 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 < ( 𝐵 − ( 1 / 𝑀 ) ) ) |
| 99 |
67 72
|
elrpd |
⊢ ( 𝜑 → 𝑀 ∈ ℝ+ ) |
| 100 |
99
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℝ+ ) |
| 101 |
41 62
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑗 ∈ ℝ+ ) |
| 102 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 1 ∈ ℝ ) |
| 103 |
|
0le1 |
⊢ 0 ≤ 1 |
| 104 |
103
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 ≤ 1 ) |
| 105 |
100 101 102 104 60
|
lediv2ad |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 / 𝑗 ) ≤ ( 1 / 𝑀 ) ) |
| 106 |
64 75 39 105
|
lesub2dd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐵 − ( 1 / 𝑀 ) ) ≤ ( 𝐵 − ( 1 / 𝑗 ) ) ) |
| 107 |
66 76 65 98 106
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 < ( 𝐵 − ( 1 / 𝑗 ) ) ) |
| 108 |
101
|
rpreccld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 / 𝑗 ) ∈ ℝ+ ) |
| 109 |
39 108
|
ltsubrpd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐵 − ( 1 / 𝑗 ) ) < 𝐵 ) |
| 110 |
36 38 65 107 109
|
eliood |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐵 − ( 1 / 𝑗 ) ) ∈ ( 𝐴 (,) 𝐵 ) ) |
| 111 |
34 110
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ∈ ℝ ) |
| 112 |
111 9
|
fmptd |
⊢ ( 𝜑 → 𝑆 : ( ℤ≥ ‘ 𝑀 ) ⟶ ℝ ) |
| 113 |
1 2 3 4 5 6
|
dvbdfbdioo |
⊢ ( 𝜑 → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) |
| 114 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) → 𝑀 ∈ ℝ ) |
| 115 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 116 |
9
|
fvmpt2 |
⊢ ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ∈ ℝ ) → ( 𝑆 ‘ 𝑗 ) = ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) |
| 117 |
115 111 116
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑆 ‘ 𝑗 ) = ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) |
| 118 |
117
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ) |
| 119 |
118
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ) |
| 120 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) |
| 121 |
110
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐵 − ( 1 / 𝑗 ) ) ∈ ( 𝐴 (,) 𝐵 ) ) |
| 122 |
|
2fveq3 |
⊢ ( 𝑥 = ( 𝐵 − ( 1 / 𝑗 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) = ( abs ‘ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ) |
| 123 |
122
|
breq1d |
⊢ ( 𝑥 = ( 𝐵 − ( 1 / 𝑗 ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ↔ ( abs ‘ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ≤ 𝑏 ) ) |
| 124 |
123
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ∧ ( 𝐵 − ( 1 / 𝑗 ) ) ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ≤ 𝑏 ) |
| 125 |
120 121 124
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ≤ 𝑏 ) |
| 126 |
119 125
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) |
| 127 |
126
|
a1d |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑀 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) |
| 128 |
127
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) → ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑀 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) |
| 129 |
|
breq1 |
⊢ ( 𝑘 = 𝑀 → ( 𝑘 ≤ 𝑗 ↔ 𝑀 ≤ 𝑗 ) ) |
| 130 |
129
|
imbi1d |
⊢ ( 𝑘 = 𝑀 → ( ( 𝑘 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ↔ ( 𝑀 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) ) |
| 131 |
130
|
ralbidv |
⊢ ( 𝑘 = 𝑀 → ( ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑘 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ↔ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑀 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) ) |
| 132 |
131
|
rspcev |
⊢ ( ( 𝑀 ∈ ℝ ∧ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑀 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑘 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) |
| 133 |
114 128 132
|
syl2anc |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) → ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑘 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) |
| 134 |
133
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 → ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑘 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) ) |
| 135 |
134
|
reximdv |
⊢ ( 𝜑 → ( ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 → ∃ 𝑏 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑘 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) ) |
| 136 |
113 135
|
mpd |
⊢ ( 𝜑 → ∃ 𝑏 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝑘 ≤ 𝑗 → ( abs ‘ ( 𝑆 ‘ 𝑗 ) ) ≤ 𝑏 ) ) |
| 137 |
16 33 112 136
|
limsupre |
⊢ ( 𝜑 → ( lim sup ‘ 𝑆 ) ∈ ℝ ) |
| 138 |
137
|
recnd |
⊢ ( 𝜑 → ( lim sup ‘ 𝑆 ) ∈ ℂ ) |
| 139 |
|
eluzelre |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑗 ∈ ℝ ) |
| 140 |
139
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑗 ∈ ℝ ) |
| 141 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 ∈ ℝ ) |
| 142 |
52
|
peano2zd |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 1 / ( 𝐵 − 𝐴 ) ) ) + 1 ) ∈ ℤ ) |
| 143 |
8 142
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 144 |
143
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑀 ∈ ℤ ) |
| 145 |
144
|
zred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑀 ∈ ℝ ) |
| 146 |
145
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ℝ ) |
| 147 |
72
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 < 𝑀 ) |
| 148 |
|
ioomidp |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ( 𝐴 (,) 𝐵 ) ) |
| 149 |
1 2 3 148
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ( 𝐴 (,) 𝐵 ) ) |
| 150 |
|
ne0i |
⊢ ( ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) |
| 151 |
149 150
|
syl |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) |
| 152 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
| 153 |
152
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 154 |
|
dvfre |
⊢ ( ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
| 155 |
4 153 154
|
syl2anc |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
| 156 |
5
|
feq2d |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ↔ ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
| 157 |
155 156
|
mpbid |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 158 |
157
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
| 159 |
158
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 160 |
159
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 161 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 162 |
|
eqid |
⊢ sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) = sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) |
| 163 |
151 160 6 161 162
|
suprnmpt |
⊢ ( 𝜑 → ( sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) ∈ ℝ ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) ) ) |
| 164 |
163
|
simpld |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) ∈ ℝ ) |
| 165 |
7 164
|
eqeltrid |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 166 |
165
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑌 ∈ ℝ ) |
| 167 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
| 168 |
167
|
rehalfcld |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) ∈ ℝ ) |
| 169 |
168
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 / 2 ) ∈ ℝ ) |
| 170 |
167
|
recnd |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ ) |
| 171 |
170
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℂ ) |
| 172 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 2 ∈ ℂ ) |
| 173 |
|
rpne0 |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ≠ 0 ) |
| 174 |
173
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ≠ 0 ) |
| 175 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 176 |
175
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 2 ≠ 0 ) |
| 177 |
171 172 174 176
|
divne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 / 2 ) ≠ 0 ) |
| 178 |
166 169 177
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑌 / ( 𝑥 / 2 ) ) ∈ ℝ ) |
| 179 |
178
|
flcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) ∈ ℤ ) |
| 180 |
179
|
peano2zd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ∈ ℤ ) |
| 181 |
180 144
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → if ( 𝑀 ≤ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , 𝑀 ) ∈ ℤ ) |
| 182 |
11 181
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑁 ∈ ℤ ) |
| 183 |
182
|
zred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑁 ∈ ℝ ) |
| 184 |
183
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ℝ ) |
| 185 |
180
|
zred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ∈ ℝ ) |
| 186 |
|
max1 |
⊢ ( ( 𝑀 ∈ ℝ ∧ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , 𝑀 ) ) |
| 187 |
145 185 186
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑀 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , 𝑀 ) ) |
| 188 |
187 11
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑀 ≤ 𝑁 ) |
| 189 |
188
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ≤ 𝑁 ) |
| 190 |
|
eluzle |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ≤ 𝑗 ) |
| 191 |
190
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ≤ 𝑗 ) |
| 192 |
146 184 140 189 191
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ≤ 𝑗 ) |
| 193 |
141 146 140 147 192
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 < 𝑗 ) |
| 194 |
193
|
gt0ne0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑗 ≠ 0 ) |
| 195 |
140 194
|
rereccld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 1 / 𝑗 ) ∈ ℝ ) |
| 196 |
140 193
|
recgt0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 < ( 1 / 𝑗 ) ) |
| 197 |
195 196
|
elrpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 1 / 𝑗 ) ∈ ℝ+ ) |
| 198 |
197
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) → ( 1 / 𝑗 ) ∈ ℝ+ ) |
| 199 |
12
|
biimpi |
⊢ ( 𝜒 → ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) ) |
| 200 |
|
simp-5l |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) → 𝜑 ) |
| 201 |
199 200
|
syl |
⊢ ( 𝜒 → 𝜑 ) |
| 202 |
201 4
|
syl |
⊢ ( 𝜒 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 203 |
199
|
simplrd |
⊢ ( 𝜒 → 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 204 |
202 203
|
ffvelcdmd |
⊢ ( 𝜒 → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 205 |
204
|
recnd |
⊢ ( 𝜒 → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 206 |
201 112
|
syl |
⊢ ( 𝜒 → 𝑆 : ( ℤ≥ ‘ 𝑀 ) ⟶ ℝ ) |
| 207 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) → 𝑥 ∈ ℝ+ ) |
| 208 |
199 207
|
syl |
⊢ ( 𝜒 → 𝑥 ∈ ℝ+ ) |
| 209 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) |
| 210 |
144 182 188 209
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 211 |
201 208 210
|
syl2anc |
⊢ ( 𝜒 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 212 |
|
uzss |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 213 |
211 212
|
syl |
⊢ ( 𝜒 → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 214 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 215 |
199 214
|
syl |
⊢ ( 𝜒 → 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 216 |
213 215
|
sseldd |
⊢ ( 𝜒 → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 217 |
206 216
|
ffvelcdmd |
⊢ ( 𝜒 → ( 𝑆 ‘ 𝑗 ) ∈ ℝ ) |
| 218 |
217
|
recnd |
⊢ ( 𝜒 → ( 𝑆 ‘ 𝑗 ) ∈ ℂ ) |
| 219 |
201 138
|
syl |
⊢ ( 𝜒 → ( lim sup ‘ 𝑆 ) ∈ ℂ ) |
| 220 |
205 218 219
|
npncand |
⊢ ( 𝜒 → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) = ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) |
| 221 |
220
|
eqcomd |
⊢ ( 𝜒 → ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) |
| 222 |
221
|
fveq2d |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) ) |
| 223 |
204 217
|
resubcld |
⊢ ( 𝜒 → ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ∈ ℝ ) |
| 224 |
201 137
|
syl |
⊢ ( 𝜒 → ( lim sup ‘ 𝑆 ) ∈ ℝ ) |
| 225 |
217 224
|
resubcld |
⊢ ( 𝜒 → ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ∈ ℝ ) |
| 226 |
223 225
|
readdcld |
⊢ ( 𝜒 → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ∈ ℝ ) |
| 227 |
226
|
recnd |
⊢ ( 𝜒 → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ∈ ℂ ) |
| 228 |
227
|
abscld |
⊢ ( 𝜒 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) ∈ ℝ ) |
| 229 |
223
|
recnd |
⊢ ( 𝜒 → ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ∈ ℂ ) |
| 230 |
229
|
abscld |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 231 |
225
|
recnd |
⊢ ( 𝜒 → ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ∈ ℂ ) |
| 232 |
231
|
abscld |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ∈ ℝ ) |
| 233 |
230 232
|
readdcld |
⊢ ( 𝜒 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ) + ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) ∈ ℝ ) |
| 234 |
208
|
rpred |
⊢ ( 𝜒 → 𝑥 ∈ ℝ ) |
| 235 |
229 231
|
abstrid |
⊢ ( 𝜒 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) ≤ ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ) + ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) ) |
| 236 |
234
|
rehalfcld |
⊢ ( 𝜒 → ( 𝑥 / 2 ) ∈ ℝ ) |
| 237 |
201 216 117
|
syl2anc |
⊢ ( 𝜒 → ( 𝑆 ‘ 𝑗 ) = ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) |
| 238 |
237
|
oveq2d |
⊢ ( 𝜒 → ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) = ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ) |
| 239 |
238
|
fveq2d |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ) ) |
| 240 |
239 230
|
eqeltrrd |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ) ∈ ℝ ) |
| 241 |
201 165
|
syl |
⊢ ( 𝜒 → 𝑌 ∈ ℝ ) |
| 242 |
152 203
|
sselid |
⊢ ( 𝜒 → 𝑧 ∈ ℝ ) |
| 243 |
201 216 65
|
syl2anc |
⊢ ( 𝜒 → ( 𝐵 − ( 1 / 𝑗 ) ) ∈ ℝ ) |
| 244 |
242 243
|
resubcld |
⊢ ( 𝜒 → ( 𝑧 − ( 𝐵 − ( 1 / 𝑗 ) ) ) ∈ ℝ ) |
| 245 |
241 244
|
remulcld |
⊢ ( 𝜒 → ( 𝑌 · ( 𝑧 − ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ∈ ℝ ) |
| 246 |
201 1
|
syl |
⊢ ( 𝜒 → 𝐴 ∈ ℝ ) |
| 247 |
201 2
|
syl |
⊢ ( 𝜒 → 𝐵 ∈ ℝ ) |
| 248 |
201 5
|
syl |
⊢ ( 𝜒 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
| 249 |
163
|
simprd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) ) |
| 250 |
7
|
breq2i |
⊢ ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑌 ↔ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) ) |
| 251 |
250
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑌 ↔ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) ) |
| 252 |
249 251
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑌 ) |
| 253 |
201 252
|
syl |
⊢ ( 𝜒 → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑌 ) |
| 254 |
|
2fveq3 |
⊢ ( 𝑤 = 𝑥 → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) = ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 255 |
254
|
breq1d |
⊢ ( 𝑤 = 𝑥 → ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ≤ 𝑌 ↔ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑌 ) ) |
| 256 |
255
|
cbvralvw |
⊢ ( ∀ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ≤ 𝑌 ↔ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑌 ) |
| 257 |
253 256
|
sylibr |
⊢ ( 𝜒 → ∀ 𝑤 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑤 ) ) ≤ 𝑌 ) |
| 258 |
201 216 110
|
syl2anc |
⊢ ( 𝜒 → ( 𝐵 − ( 1 / 𝑗 ) ) ∈ ( 𝐴 (,) 𝐵 ) ) |
| 259 |
243
|
rexrd |
⊢ ( 𝜒 → ( 𝐵 − ( 1 / 𝑗 ) ) ∈ ℝ* ) |
| 260 |
201 37
|
syl |
⊢ ( 𝜒 → 𝐵 ∈ ℝ* ) |
| 261 |
15 216
|
sselid |
⊢ ( 𝜒 → 𝑗 ∈ ℝ ) |
| 262 |
201 216 63
|
syl2anc |
⊢ ( 𝜒 → 𝑗 ≠ 0 ) |
| 263 |
261 262
|
rereccld |
⊢ ( 𝜒 → ( 1 / 𝑗 ) ∈ ℝ ) |
| 264 |
247 242
|
resubcld |
⊢ ( 𝜒 → ( 𝐵 − 𝑧 ) ∈ ℝ ) |
| 265 |
242 247
|
resubcld |
⊢ ( 𝜒 → ( 𝑧 − 𝐵 ) ∈ ℝ ) |
| 266 |
265
|
recnd |
⊢ ( 𝜒 → ( 𝑧 − 𝐵 ) ∈ ℂ ) |
| 267 |
266
|
abscld |
⊢ ( 𝜒 → ( abs ‘ ( 𝑧 − 𝐵 ) ) ∈ ℝ ) |
| 268 |
264
|
leabsd |
⊢ ( 𝜒 → ( 𝐵 − 𝑧 ) ≤ ( abs ‘ ( 𝐵 − 𝑧 ) ) ) |
| 269 |
201 92
|
syl |
⊢ ( 𝜒 → 𝐵 ∈ ℂ ) |
| 270 |
242
|
recnd |
⊢ ( 𝜒 → 𝑧 ∈ ℂ ) |
| 271 |
269 270
|
abssubd |
⊢ ( 𝜒 → ( abs ‘ ( 𝐵 − 𝑧 ) ) = ( abs ‘ ( 𝑧 − 𝐵 ) ) ) |
| 272 |
268 271
|
breqtrd |
⊢ ( 𝜒 → ( 𝐵 − 𝑧 ) ≤ ( abs ‘ ( 𝑧 − 𝐵 ) ) ) |
| 273 |
199
|
simprd |
⊢ ( 𝜒 → ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) |
| 274 |
264 267 263 272 273
|
lelttrd |
⊢ ( 𝜒 → ( 𝐵 − 𝑧 ) < ( 1 / 𝑗 ) ) |
| 275 |
247 242 263 274
|
ltsub23d |
⊢ ( 𝜒 → ( 𝐵 − ( 1 / 𝑗 ) ) < 𝑧 ) |
| 276 |
201 35
|
syl |
⊢ ( 𝜒 → 𝐴 ∈ ℝ* ) |
| 277 |
|
iooltub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑧 < 𝐵 ) |
| 278 |
276 260 203 277
|
syl3anc |
⊢ ( 𝜒 → 𝑧 < 𝐵 ) |
| 279 |
259 260 242 275 278
|
eliood |
⊢ ( 𝜒 → 𝑧 ∈ ( ( 𝐵 − ( 1 / 𝑗 ) ) (,) 𝐵 ) ) |
| 280 |
246 247 202 248 241 257 258 279
|
dvbdfbdioolem1 |
⊢ ( 𝜒 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ) ≤ ( 𝑌 · ( 𝑧 − ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ) ≤ ( 𝑌 · ( 𝐵 − 𝐴 ) ) ) ) |
| 281 |
280
|
simpld |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ) ≤ ( 𝑌 · ( 𝑧 − ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ) |
| 282 |
201 216 64
|
syl2anc |
⊢ ( 𝜒 → ( 1 / 𝑗 ) ∈ ℝ ) |
| 283 |
241 282
|
remulcld |
⊢ ( 𝜒 → ( 𝑌 · ( 1 / 𝑗 ) ) ∈ ℝ ) |
| 284 |
157 149
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ∈ ℝ ) |
| 285 |
284
|
recnd |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ∈ ℂ ) |
| 286 |
285
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) ∈ ℝ ) |
| 287 |
285
|
absge0d |
⊢ ( 𝜑 → 0 ≤ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) ) |
| 288 |
|
2fveq3 |
⊢ ( 𝑥 = ( ( 𝐴 + 𝐵 ) / 2 ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) = ( abs ‘ ( ( ℝ D 𝐹 ) ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) ) |
| 289 |
7
|
eqcomi |
⊢ sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) = 𝑌 |
| 290 |
289
|
a1i |
⊢ ( 𝑥 = ( ( 𝐴 + 𝐵 ) / 2 ) → sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) = 𝑌 ) |
| 291 |
288 290
|
breq12d |
⊢ ( 𝑥 = ( ( 𝐴 + 𝐵 ) / 2 ) → ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) ↔ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) ≤ 𝑌 ) ) |
| 292 |
291
|
rspcva |
⊢ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ( 𝐴 (,) 𝐵 ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ sup ( ran ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) , ℝ , < ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) ≤ 𝑌 ) |
| 293 |
149 249 292
|
syl2anc |
⊢ ( 𝜑 → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) ≤ 𝑌 ) |
| 294 |
22 286 165 287 293
|
letrd |
⊢ ( 𝜑 → 0 ≤ 𝑌 ) |
| 295 |
201 294
|
syl |
⊢ ( 𝜒 → 0 ≤ 𝑌 ) |
| 296 |
282
|
recnd |
⊢ ( 𝜒 → ( 1 / 𝑗 ) ∈ ℂ ) |
| 297 |
|
sub31 |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 1 / 𝑗 ) ∈ ℂ ) → ( 𝑧 − ( 𝐵 − ( 1 / 𝑗 ) ) ) = ( ( 1 / 𝑗 ) − ( 𝐵 − 𝑧 ) ) ) |
| 298 |
270 269 296 297
|
syl3anc |
⊢ ( 𝜒 → ( 𝑧 − ( 𝐵 − ( 1 / 𝑗 ) ) ) = ( ( 1 / 𝑗 ) − ( 𝐵 − 𝑧 ) ) ) |
| 299 |
242 247
|
posdifd |
⊢ ( 𝜒 → ( 𝑧 < 𝐵 ↔ 0 < ( 𝐵 − 𝑧 ) ) ) |
| 300 |
278 299
|
mpbid |
⊢ ( 𝜒 → 0 < ( 𝐵 − 𝑧 ) ) |
| 301 |
264 300
|
elrpd |
⊢ ( 𝜒 → ( 𝐵 − 𝑧 ) ∈ ℝ+ ) |
| 302 |
282 301
|
ltsubrpd |
⊢ ( 𝜒 → ( ( 1 / 𝑗 ) − ( 𝐵 − 𝑧 ) ) < ( 1 / 𝑗 ) ) |
| 303 |
298 302
|
eqbrtrd |
⊢ ( 𝜒 → ( 𝑧 − ( 𝐵 − ( 1 / 𝑗 ) ) ) < ( 1 / 𝑗 ) ) |
| 304 |
244 282 303
|
ltled |
⊢ ( 𝜒 → ( 𝑧 − ( 𝐵 − ( 1 / 𝑗 ) ) ) ≤ ( 1 / 𝑗 ) ) |
| 305 |
244 282 241 295 304
|
lemul2ad |
⊢ ( 𝜒 → ( 𝑌 · ( 𝑧 − ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ≤ ( 𝑌 · ( 1 / 𝑗 ) ) ) |
| 306 |
283
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑌 = 0 ) → ( 𝑌 · ( 1 / 𝑗 ) ) ∈ ℝ ) |
| 307 |
236
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑌 = 0 ) → ( 𝑥 / 2 ) ∈ ℝ ) |
| 308 |
|
oveq1 |
⊢ ( 𝑌 = 0 → ( 𝑌 · ( 1 / 𝑗 ) ) = ( 0 · ( 1 / 𝑗 ) ) ) |
| 309 |
296
|
mul02d |
⊢ ( 𝜒 → ( 0 · ( 1 / 𝑗 ) ) = 0 ) |
| 310 |
308 309
|
sylan9eqr |
⊢ ( ( 𝜒 ∧ 𝑌 = 0 ) → ( 𝑌 · ( 1 / 𝑗 ) ) = 0 ) |
| 311 |
208
|
rphalfcld |
⊢ ( 𝜒 → ( 𝑥 / 2 ) ∈ ℝ+ ) |
| 312 |
311
|
rpgt0d |
⊢ ( 𝜒 → 0 < ( 𝑥 / 2 ) ) |
| 313 |
312
|
adantr |
⊢ ( ( 𝜒 ∧ 𝑌 = 0 ) → 0 < ( 𝑥 / 2 ) ) |
| 314 |
310 313
|
eqbrtrd |
⊢ ( ( 𝜒 ∧ 𝑌 = 0 ) → ( 𝑌 · ( 1 / 𝑗 ) ) < ( 𝑥 / 2 ) ) |
| 315 |
306 307 314
|
ltled |
⊢ ( ( 𝜒 ∧ 𝑌 = 0 ) → ( 𝑌 · ( 1 / 𝑗 ) ) ≤ ( 𝑥 / 2 ) ) |
| 316 |
241
|
adantr |
⊢ ( ( 𝜒 ∧ ¬ 𝑌 = 0 ) → 𝑌 ∈ ℝ ) |
| 317 |
295
|
adantr |
⊢ ( ( 𝜒 ∧ ¬ 𝑌 = 0 ) → 0 ≤ 𝑌 ) |
| 318 |
|
neqne |
⊢ ( ¬ 𝑌 = 0 → 𝑌 ≠ 0 ) |
| 319 |
318
|
adantl |
⊢ ( ( 𝜒 ∧ ¬ 𝑌 = 0 ) → 𝑌 ≠ 0 ) |
| 320 |
316 317 319
|
ne0gt0d |
⊢ ( ( 𝜒 ∧ ¬ 𝑌 = 0 ) → 0 < 𝑌 ) |
| 321 |
283
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 · ( 1 / 𝑗 ) ) ∈ ℝ ) |
| 322 |
15 211
|
sselid |
⊢ ( 𝜒 → 𝑁 ∈ ℝ ) |
| 323 |
|
0red |
⊢ ( 𝜒 → 0 ∈ ℝ ) |
| 324 |
201 208 145
|
syl2anc |
⊢ ( 𝜒 → 𝑀 ∈ ℝ ) |
| 325 |
201 72
|
syl |
⊢ ( 𝜒 → 0 < 𝑀 ) |
| 326 |
201 208 188
|
syl2anc |
⊢ ( 𝜒 → 𝑀 ≤ 𝑁 ) |
| 327 |
323 324 322 325 326
|
ltletrd |
⊢ ( 𝜒 → 0 < 𝑁 ) |
| 328 |
327
|
gt0ne0d |
⊢ ( 𝜒 → 𝑁 ≠ 0 ) |
| 329 |
322 328
|
rereccld |
⊢ ( 𝜒 → ( 1 / 𝑁 ) ∈ ℝ ) |
| 330 |
241 329
|
remulcld |
⊢ ( 𝜒 → ( 𝑌 · ( 1 / 𝑁 ) ) ∈ ℝ ) |
| 331 |
330
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 · ( 1 / 𝑁 ) ) ∈ ℝ ) |
| 332 |
236
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑥 / 2 ) ∈ ℝ ) |
| 333 |
282
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 1 / 𝑗 ) ∈ ℝ ) |
| 334 |
329
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 1 / 𝑁 ) ∈ ℝ ) |
| 335 |
241
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 𝑌 ∈ ℝ ) |
| 336 |
295
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 0 ≤ 𝑌 ) |
| 337 |
322 327
|
elrpd |
⊢ ( 𝜒 → 𝑁 ∈ ℝ+ ) |
| 338 |
201 216 101
|
syl2anc |
⊢ ( 𝜒 → 𝑗 ∈ ℝ+ ) |
| 339 |
|
1red |
⊢ ( 𝜒 → 1 ∈ ℝ ) |
| 340 |
103
|
a1i |
⊢ ( 𝜒 → 0 ≤ 1 ) |
| 341 |
215 190
|
syl |
⊢ ( 𝜒 → 𝑁 ≤ 𝑗 ) |
| 342 |
337 338 339 340 341
|
lediv2ad |
⊢ ( 𝜒 → ( 1 / 𝑗 ) ≤ ( 1 / 𝑁 ) ) |
| 343 |
342
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 1 / 𝑗 ) ≤ ( 1 / 𝑁 ) ) |
| 344 |
333 334 335 336 343
|
lemul2ad |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 · ( 1 / 𝑗 ) ) ≤ ( 𝑌 · ( 1 / 𝑁 ) ) ) |
| 345 |
234
|
recnd |
⊢ ( 𝜒 → 𝑥 ∈ ℂ ) |
| 346 |
|
2cnd |
⊢ ( 𝜒 → 2 ∈ ℂ ) |
| 347 |
208
|
rpne0d |
⊢ ( 𝜒 → 𝑥 ≠ 0 ) |
| 348 |
175
|
a1i |
⊢ ( 𝜒 → 2 ≠ 0 ) |
| 349 |
345 346 347 348
|
divne0d |
⊢ ( 𝜒 → ( 𝑥 / 2 ) ≠ 0 ) |
| 350 |
241 236 349
|
redivcld |
⊢ ( 𝜒 → ( 𝑌 / ( 𝑥 / 2 ) ) ∈ ℝ ) |
| 351 |
350
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 / ( 𝑥 / 2 ) ) ∈ ℝ ) |
| 352 |
|
simpr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 0 < 𝑌 ) |
| 353 |
312
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 0 < ( 𝑥 / 2 ) ) |
| 354 |
335 332 352 353
|
divgt0d |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 0 < ( 𝑌 / ( 𝑥 / 2 ) ) ) |
| 355 |
351 354
|
elrpd |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 / ( 𝑥 / 2 ) ) ∈ ℝ+ ) |
| 356 |
355
|
rprecred |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 1 / ( 𝑌 / ( 𝑥 / 2 ) ) ) ∈ ℝ ) |
| 357 |
337
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 𝑁 ∈ ℝ+ ) |
| 358 |
|
1red |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 1 ∈ ℝ ) |
| 359 |
103
|
a1i |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 0 ≤ 1 ) |
| 360 |
350
|
flcld |
⊢ ( 𝜒 → ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) ∈ ℤ ) |
| 361 |
360
|
peano2zd |
⊢ ( 𝜒 → ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ∈ ℤ ) |
| 362 |
361
|
zred |
⊢ ( 𝜒 → ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ∈ ℝ ) |
| 363 |
201 143
|
syl |
⊢ ( 𝜒 → 𝑀 ∈ ℤ ) |
| 364 |
361 363
|
ifcld |
⊢ ( 𝜒 → if ( 𝑀 ≤ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , 𝑀 ) ∈ ℤ ) |
| 365 |
11 364
|
eqeltrid |
⊢ ( 𝜒 → 𝑁 ∈ ℤ ) |
| 366 |
365
|
zred |
⊢ ( 𝜒 → 𝑁 ∈ ℝ ) |
| 367 |
|
flltp1 |
⊢ ( ( 𝑌 / ( 𝑥 / 2 ) ) ∈ ℝ → ( 𝑌 / ( 𝑥 / 2 ) ) < ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ) |
| 368 |
350 367
|
syl |
⊢ ( 𝜒 → ( 𝑌 / ( 𝑥 / 2 ) ) < ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ) |
| 369 |
201 67
|
syl |
⊢ ( 𝜒 → 𝑀 ∈ ℝ ) |
| 370 |
|
max2 |
⊢ ( ( 𝑀 ∈ ℝ ∧ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ∈ ℝ ) → ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , 𝑀 ) ) |
| 371 |
369 362 370
|
syl2anc |
⊢ ( 𝜒 → ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) , 𝑀 ) ) |
| 372 |
371 11
|
breqtrrdi |
⊢ ( 𝜒 → ( ( ⌊ ‘ ( 𝑌 / ( 𝑥 / 2 ) ) ) + 1 ) ≤ 𝑁 ) |
| 373 |
350 362 366 368 372
|
ltletrd |
⊢ ( 𝜒 → ( 𝑌 / ( 𝑥 / 2 ) ) < 𝑁 ) |
| 374 |
350 322 373
|
ltled |
⊢ ( 𝜒 → ( 𝑌 / ( 𝑥 / 2 ) ) ≤ 𝑁 ) |
| 375 |
374
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 / ( 𝑥 / 2 ) ) ≤ 𝑁 ) |
| 376 |
355 357 358 359 375
|
lediv2ad |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 1 / 𝑁 ) ≤ ( 1 / ( 𝑌 / ( 𝑥 / 2 ) ) ) ) |
| 377 |
334 356 335 336 376
|
lemul2ad |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 · ( 1 / 𝑁 ) ) ≤ ( 𝑌 · ( 1 / ( 𝑌 / ( 𝑥 / 2 ) ) ) ) ) |
| 378 |
335
|
recnd |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 𝑌 ∈ ℂ ) |
| 379 |
351
|
recnd |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 / ( 𝑥 / 2 ) ) ∈ ℂ ) |
| 380 |
354
|
gt0ne0d |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 / ( 𝑥 / 2 ) ) ≠ 0 ) |
| 381 |
378 379 380
|
divrecd |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 / ( 𝑌 / ( 𝑥 / 2 ) ) ) = ( 𝑌 · ( 1 / ( 𝑌 / ( 𝑥 / 2 ) ) ) ) ) |
| 382 |
332
|
recnd |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑥 / 2 ) ∈ ℂ ) |
| 383 |
352
|
gt0ne0d |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → 𝑌 ≠ 0 ) |
| 384 |
349
|
adantr |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑥 / 2 ) ≠ 0 ) |
| 385 |
378 382 383 384
|
ddcand |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 / ( 𝑌 / ( 𝑥 / 2 ) ) ) = ( 𝑥 / 2 ) ) |
| 386 |
381 385
|
eqtr3d |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 · ( 1 / ( 𝑌 / ( 𝑥 / 2 ) ) ) ) = ( 𝑥 / 2 ) ) |
| 387 |
377 386
|
breqtrd |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 · ( 1 / 𝑁 ) ) ≤ ( 𝑥 / 2 ) ) |
| 388 |
321 331 332 344 387
|
letrd |
⊢ ( ( 𝜒 ∧ 0 < 𝑌 ) → ( 𝑌 · ( 1 / 𝑗 ) ) ≤ ( 𝑥 / 2 ) ) |
| 389 |
320 388
|
syldan |
⊢ ( ( 𝜒 ∧ ¬ 𝑌 = 0 ) → ( 𝑌 · ( 1 / 𝑗 ) ) ≤ ( 𝑥 / 2 ) ) |
| 390 |
315 389
|
pm2.61dan |
⊢ ( 𝜒 → ( 𝑌 · ( 1 / 𝑗 ) ) ≤ ( 𝑥 / 2 ) ) |
| 391 |
245 283 236 305 390
|
letrd |
⊢ ( 𝜒 → ( 𝑌 · ( 𝑧 − ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ≤ ( 𝑥 / 2 ) ) |
| 392 |
240 245 236 281 391
|
letrd |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ) ≤ ( 𝑥 / 2 ) ) |
| 393 |
239 392
|
eqbrtrd |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ) ≤ ( 𝑥 / 2 ) ) |
| 394 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) → ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) |
| 395 |
199 394
|
syl |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) |
| 396 |
230 232 236 236 393 395
|
leltaddd |
⊢ ( 𝜒 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ) + ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) < ( ( 𝑥 / 2 ) + ( 𝑥 / 2 ) ) ) |
| 397 |
345
|
2halvesd |
⊢ ( 𝜒 → ( ( 𝑥 / 2 ) + ( 𝑥 / 2 ) ) = 𝑥 ) |
| 398 |
396 397
|
breqtrd |
⊢ ( 𝜒 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) ) + ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) < 𝑥 ) |
| 399 |
228 233 234 235 398
|
lelttrd |
⊢ ( 𝜒 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑆 ‘ 𝑗 ) ) + ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) ) < 𝑥 ) |
| 400 |
222 399
|
eqbrtrd |
⊢ ( 𝜒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) |
| 401 |
12 400
|
sylbir |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) |
| 402 |
401
|
adantrl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) |
| 403 |
402
|
ex |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) ) |
| 404 |
403
|
ralrimiva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) → ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) ) |
| 405 |
|
brimralrspcev |
⊢ ( ( ( 1 / 𝑗 ) ∈ ℝ+ ∧ ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < ( 1 / 𝑗 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) ) |
| 406 |
198 404 405
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) ) |
| 407 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ≤ 𝑁 ) → 𝑏 ≤ 𝑁 ) |
| 408 |
407
|
iftrued |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ≤ 𝑁 ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) = 𝑁 ) |
| 409 |
|
uzid |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 410 |
182 409
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 411 |
410
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ≤ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 412 |
408 411
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ≤ 𝑁 ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 413 |
412
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ 𝑏 ≤ 𝑁 ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 414 |
|
iffalse |
⊢ ( ¬ 𝑏 ≤ 𝑁 → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) = 𝑏 ) |
| 415 |
414
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) = 𝑏 ) |
| 416 |
182
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → 𝑁 ∈ ℤ ) |
| 417 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → 𝑏 ∈ ℤ ) |
| 418 |
416
|
zred |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → 𝑁 ∈ ℝ ) |
| 419 |
417
|
zred |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → 𝑏 ∈ ℝ ) |
| 420 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → ¬ 𝑏 ≤ 𝑁 ) |
| 421 |
418 419
|
ltnled |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → ( 𝑁 < 𝑏 ↔ ¬ 𝑏 ≤ 𝑁 ) ) |
| 422 |
420 421
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → 𝑁 < 𝑏 ) |
| 423 |
418 419 422
|
ltled |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → 𝑁 ≤ 𝑏 ) |
| 424 |
|
eluz2 |
⊢ ( 𝑏 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑁 ≤ 𝑏 ) ) |
| 425 |
416 417 423 424
|
syl3anbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → 𝑏 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 426 |
415 425
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ¬ 𝑏 ≤ 𝑁 ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 427 |
413 426
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 428 |
427
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 429 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) → ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 430 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) → 𝑏 ∈ ℤ ) |
| 431 |
182
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
| 432 |
431 430
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ℤ ) |
| 433 |
430
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) → 𝑏 ∈ ℝ ) |
| 434 |
431
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) → 𝑁 ∈ ℝ ) |
| 435 |
|
max1 |
⊢ ( ( 𝑏 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → 𝑏 ≤ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) |
| 436 |
433 434 435
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) → 𝑏 ≤ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) |
| 437 |
|
eluz2 |
⊢ ( if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑏 ) ↔ ( 𝑏 ∈ ℤ ∧ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ℤ ∧ 𝑏 ≤ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) ) |
| 438 |
430 432 436 437
|
syl3anbrc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑏 ) ) |
| 439 |
438
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) → if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑏 ) ) |
| 440 |
|
fveq2 |
⊢ ( 𝑐 = if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) → ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) ) |
| 441 |
440
|
eleq1d |
⊢ ( 𝑐 = if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) → ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ↔ ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) ∈ ℂ ) ) |
| 442 |
440
|
fvoveq1d |
⊢ ( 𝑐 = if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) → ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) = ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) ) |
| 443 |
442
|
breq1d |
⊢ ( 𝑐 = if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) → ( ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ↔ ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 444 |
441 443
|
anbi12d |
⊢ ( 𝑐 = if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) → ( ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ↔ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) ) |
| 445 |
444
|
rspccva |
⊢ ( ( ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ∧ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑏 ) ) → ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 446 |
429 439 445
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) → ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 447 |
446
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) → ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) |
| 448 |
|
fveq2 |
⊢ ( 𝑗 = if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) → ( 𝑆 ‘ 𝑗 ) = ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) ) |
| 449 |
448
|
fvoveq1d |
⊢ ( 𝑗 = if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) → ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) = ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) ) |
| 450 |
449
|
breq1d |
⊢ ( 𝑗 = if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) → ( ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ↔ ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 451 |
450
|
rspcev |
⊢ ( ( if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ∈ ( ℤ≥ ‘ 𝑁 ) ∧ ( abs ‘ ( ( 𝑆 ‘ if ( 𝑏 ≤ 𝑁 , 𝑁 , 𝑏 ) ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) |
| 452 |
428 447 451
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑏 ∈ ℤ ) ∧ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) |
| 453 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 454 |
453
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 455 |
4 454
|
fssd |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 456 |
|
dvcn |
⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) ∧ dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 457 |
454 455 153 5 456
|
syl31anc |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 458 |
|
cncfcdm |
⊢ ( ( ℝ ⊆ ℂ ∧ 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) → ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ↔ 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
| 459 |
454 457 458
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ↔ 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
| 460 |
4 459
|
mpbird |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) |
| 461 |
110 10
|
fmptd |
⊢ ( 𝜑 → 𝑅 : ( ℤ≥ ‘ 𝑀 ) ⟶ ( 𝐴 (,) 𝐵 ) ) |
| 462 |
|
eqid |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) |
| 463 |
|
climrel |
⊢ Rel ⇝ |
| 464 |
463
|
a1i |
⊢ ( 𝜑 → Rel ⇝ ) |
| 465 |
|
fvex |
⊢ ( ℤ≥ ‘ 𝑀 ) ∈ V |
| 466 |
465
|
mptex |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) ∈ V |
| 467 |
466
|
a1i |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) ∈ V ) |
| 468 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) ) |
| 469 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑗 = 𝑚 ) → 𝐵 = 𝐵 ) |
| 470 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 471 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐵 ∈ ℝ ) |
| 472 |
468 469 470 471
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) ‘ 𝑚 ) = 𝐵 ) |
| 473 |
31 30 467 92 472
|
climconst |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) ⇝ 𝐵 ) |
| 474 |
465
|
mptex |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐵 − ( 1 / 𝑗 ) ) ) ∈ V |
| 475 |
10 474
|
eqeltri |
⊢ 𝑅 ∈ V |
| 476 |
475
|
a1i |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 477 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 478 |
|
elnnnn0b |
⊢ ( 𝑀 ∈ ℕ ↔ ( 𝑀 ∈ ℕ0 ∧ 0 < 𝑀 ) ) |
| 479 |
29 72 478
|
sylanbrc |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 480 |
|
divcnvg |
⊢ ( ( 1 ∈ ℂ ∧ 𝑀 ∈ ℕ ) → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 1 / 𝑗 ) ) ⇝ 0 ) |
| 481 |
477 479 480
|
syl2anc |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 1 / 𝑗 ) ) ⇝ 0 ) |
| 482 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) ) |
| 483 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑗 = 𝑖 ) → 𝐵 = 𝐵 ) |
| 484 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 485 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐵 ∈ ℝ ) |
| 486 |
482 483 484 485
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) ‘ 𝑖 ) = 𝐵 ) |
| 487 |
486 485
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) ‘ 𝑖 ) ∈ ℝ ) |
| 488 |
487
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) ‘ 𝑖 ) ∈ ℂ ) |
| 489 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 1 / 𝑗 ) ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 1 / 𝑗 ) ) ) |
| 490 |
|
oveq2 |
⊢ ( 𝑗 = 𝑖 → ( 1 / 𝑗 ) = ( 1 / 𝑖 ) ) |
| 491 |
490
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑗 = 𝑖 ) → ( 1 / 𝑗 ) = ( 1 / 𝑖 ) ) |
| 492 |
15 484
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑖 ∈ ℝ ) |
| 493 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 ∈ ℝ ) |
| 494 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ∈ ℝ ) |
| 495 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 < 𝑀 ) |
| 496 |
|
eluzle |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑖 ) |
| 497 |
496
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑀 ≤ 𝑖 ) |
| 498 |
493 494 492 495 497
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 0 < 𝑖 ) |
| 499 |
498
|
gt0ne0d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑖 ≠ 0 ) |
| 500 |
492 499
|
rereccld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 / 𝑖 ) ∈ ℝ ) |
| 501 |
489 491 484 500
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 1 / 𝑗 ) ) ‘ 𝑖 ) = ( 1 / 𝑖 ) ) |
| 502 |
492
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑖 ∈ ℂ ) |
| 503 |
502 499
|
reccld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 1 / 𝑖 ) ∈ ℂ ) |
| 504 |
501 503
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 1 / 𝑗 ) ) ‘ 𝑖 ) ∈ ℂ ) |
| 505 |
490
|
oveq2d |
⊢ ( 𝑗 = 𝑖 → ( 𝐵 − ( 1 / 𝑗 ) ) = ( 𝐵 − ( 1 / 𝑖 ) ) ) |
| 506 |
|
ovex |
⊢ ( 𝐵 − ( 1 / 𝑖 ) ) ∈ V |
| 507 |
505 10 506
|
fvmpt |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑅 ‘ 𝑖 ) = ( 𝐵 − ( 1 / 𝑖 ) ) ) |
| 508 |
507
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑅 ‘ 𝑖 ) = ( 𝐵 − ( 1 / 𝑖 ) ) ) |
| 509 |
486 501
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) ‘ 𝑖 ) − ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 1 / 𝑗 ) ) ‘ 𝑖 ) ) = ( 𝐵 − ( 1 / 𝑖 ) ) ) |
| 510 |
508 509
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑅 ‘ 𝑖 ) = ( ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ 𝐵 ) ‘ 𝑖 ) − ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 1 / 𝑗 ) ) ‘ 𝑖 ) ) ) |
| 511 |
31 30 473 476 481 488 504 510
|
climsub |
⊢ ( 𝜑 → 𝑅 ⇝ ( 𝐵 − 0 ) ) |
| 512 |
92
|
subid1d |
⊢ ( 𝜑 → ( 𝐵 − 0 ) = 𝐵 ) |
| 513 |
511 512
|
breqtrd |
⊢ ( 𝜑 → 𝑅 ⇝ 𝐵 ) |
| 514 |
|
releldm |
⊢ ( ( Rel ⇝ ∧ 𝑅 ⇝ 𝐵 ) → 𝑅 ∈ dom ⇝ ) |
| 515 |
464 513 514
|
syl2anc |
⊢ ( 𝜑 → 𝑅 ∈ dom ⇝ ) |
| 516 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( ℤ≥ ‘ 𝑙 ) = ( ℤ≥ ‘ 𝑘 ) ) |
| 517 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( 𝑅 ‘ 𝑙 ) = ( 𝑅 ‘ 𝑘 ) ) |
| 518 |
517
|
oveq2d |
⊢ ( 𝑙 = 𝑘 → ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑙 ) ) = ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) |
| 519 |
518
|
fveq2d |
⊢ ( 𝑙 = 𝑘 → ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑙 ) ) ) = ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 520 |
519
|
breq1d |
⊢ ( 𝑙 = 𝑘 → ( ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑙 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ↔ ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ) ) |
| 521 |
516 520
|
raleqbidv |
⊢ ( 𝑙 = 𝑘 → ( ∀ ℎ ∈ ( ℤ≥ ‘ 𝑙 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑙 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ↔ ∀ ℎ ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ) ) |
| 522 |
521
|
cbvrabv |
⊢ { 𝑙 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ ℎ ∈ ( ℤ≥ ‘ 𝑙 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑙 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } = { 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ ℎ ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } |
| 523 |
|
fveq2 |
⊢ ( ℎ = 𝑖 → ( 𝑅 ‘ ℎ ) = ( 𝑅 ‘ 𝑖 ) ) |
| 524 |
523
|
fvoveq1d |
⊢ ( ℎ = 𝑖 → ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) = ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 525 |
524
|
breq1d |
⊢ ( ℎ = 𝑖 → ( ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ↔ ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ) ) |
| 526 |
525
|
cbvralvw |
⊢ ( ∀ ℎ ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ↔ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ) |
| 527 |
526
|
rgenw |
⊢ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( ∀ ℎ ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ↔ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ) |
| 528 |
|
rabbi |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( ∀ ℎ ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ↔ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) ) ↔ { 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ ℎ ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } = { 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } ) |
| 529 |
527 528
|
mpbi |
⊢ { 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ ℎ ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } = { 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } |
| 530 |
522 529
|
eqtri |
⊢ { 𝑙 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ ℎ ∈ ( ℤ≥ ‘ 𝑙 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑙 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } = { 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } |
| 531 |
530
|
infeq1i |
⊢ inf ( { 𝑙 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ ℎ ∈ ( ℤ≥ ‘ 𝑙 ) ( abs ‘ ( ( 𝑅 ‘ ℎ ) − ( 𝑅 ‘ 𝑙 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } , ℝ , < ) = inf ( { 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∣ ∀ 𝑖 ∈ ( ℤ≥ ‘ 𝑘 ) ( abs ‘ ( ( 𝑅 ‘ 𝑖 ) − ( 𝑅 ‘ 𝑘 ) ) ) < ( 𝑥 / ( sup ( ran ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) , ℝ , < ) + 1 ) ) } , ℝ , < ) |
| 532 |
1 2 3 460 5 6 30 461 462 515 531
|
ioodvbdlimc1lem1 |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) ⇝ ( lim sup ‘ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) ) ) |
| 533 |
10
|
fvmpt2 |
⊢ ( ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐵 − ( 1 / 𝑗 ) ) ∈ ℝ ) → ( 𝑅 ‘ 𝑗 ) = ( 𝐵 − ( 1 / 𝑗 ) ) ) |
| 534 |
115 65 533
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑅 ‘ 𝑗 ) = ( 𝐵 − ( 1 / 𝑗 ) ) ) |
| 535 |
534
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐵 − ( 1 / 𝑗 ) ) = ( 𝑅 ‘ 𝑗 ) ) |
| 536 |
535
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) = ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) |
| 537 |
536
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) ) |
| 538 |
9 537
|
eqtrid |
⊢ ( 𝜑 → 𝑆 = ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) ) |
| 539 |
538
|
fveq2d |
⊢ ( 𝜑 → ( lim sup ‘ 𝑆 ) = ( lim sup ‘ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝑅 ‘ 𝑗 ) ) ) ) ) |
| 540 |
532 538 539
|
3brtr4d |
⊢ ( 𝜑 → 𝑆 ⇝ ( lim sup ‘ 𝑆 ) ) |
| 541 |
465
|
mptex |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐹 ‘ ( 𝐵 − ( 1 / 𝑗 ) ) ) ) ∈ V |
| 542 |
9 541
|
eqeltri |
⊢ 𝑆 ∈ V |
| 543 |
542
|
a1i |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 544 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ℤ ) → ( 𝑆 ‘ 𝑐 ) = ( 𝑆 ‘ 𝑐 ) ) |
| 545 |
543 544
|
clim |
⊢ ( 𝜑 → ( 𝑆 ⇝ ( lim sup ‘ 𝑆 ) ↔ ( ( lim sup ‘ 𝑆 ) ∈ ℂ ∧ ∀ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑎 ) ) ) ) |
| 546 |
540 545
|
mpbid |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝑆 ) ∈ ℂ ∧ ∀ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑎 ) ) ) |
| 547 |
546
|
simprd |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑎 ) ) |
| 548 |
547
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∀ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑎 ) ) |
| 549 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
| 550 |
549
|
rphalfcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 / 2 ) ∈ ℝ+ ) |
| 551 |
|
breq2 |
⊢ ( 𝑎 = ( 𝑥 / 2 ) → ( ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑎 ↔ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 552 |
551
|
anbi2d |
⊢ ( 𝑎 = ( 𝑥 / 2 ) → ( ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑎 ) ↔ ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) ) |
| 553 |
552
|
rexralbidv |
⊢ ( 𝑎 = ( 𝑥 / 2 ) → ( ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑎 ) ↔ ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) ) |
| 554 |
553
|
rspccva |
⊢ ( ( ∀ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑎 ) ∧ ( 𝑥 / 2 ) ∈ ℝ+ ) → ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 555 |
548 550 554
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑏 ∈ ℤ ∀ 𝑐 ∈ ( ℤ≥ ‘ 𝑏 ) ( ( 𝑆 ‘ 𝑐 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑆 ‘ 𝑐 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 556 |
452 555
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( ( 𝑆 ‘ 𝑗 ) − ( lim sup ‘ 𝑆 ) ) ) < ( 𝑥 / 2 ) ) |
| 557 |
406 556
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) ) |
| 558 |
557
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) ) |
| 559 |
|
ioosscn |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℂ |
| 560 |
559
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) |
| 561 |
455 560 92
|
ellimc3 |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝑆 ) ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( ( lim sup ‘ 𝑆 ) ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( lim sup ‘ 𝑆 ) ) ) < 𝑥 ) ) ) ) |
| 562 |
138 558 561
|
mpbir2and |
⊢ ( 𝜑 → ( lim sup ‘ 𝑆 ) ∈ ( 𝐹 limℂ 𝐵 ) ) |