| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluznn |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑛 ∈ ℕ ) |
| 2 |
|
eqidd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) = ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ) |
| 3 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐴 / 𝑚 ) = ( 𝐴 / 𝑛 ) ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 = 𝑛 ) → ( 𝐴 / 𝑚 ) = ( 𝐴 / 𝑛 ) ) |
| 5 |
|
id |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ ) |
| 6 |
|
ovexd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐴 / 𝑛 ) ∈ V ) |
| 7 |
2 4 5 6
|
fvmptd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ‘ 𝑛 ) = ( 𝐴 / 𝑛 ) ) |
| 8 |
7
|
eqcomd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐴 / 𝑛 ) = ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ‘ 𝑛 ) ) |
| 9 |
1 8
|
syl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 / 𝑛 ) = ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ‘ 𝑛 ) ) |
| 10 |
9
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 / 𝑛 ) = ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ‘ 𝑛 ) ) |
| 11 |
10
|
mpteq2dva |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ ) → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐴 / 𝑛 ) ) = ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ‘ 𝑛 ) ) ) |
| 12 |
|
divcnv |
⊢ ( 𝐴 ∈ ℂ → ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ ) → ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ) |
| 14 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℕ ) |
| 15 |
14
|
nnzd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℤ ) |
| 16 |
|
nnex |
⊢ ℕ ∈ V |
| 17 |
16
|
mptex |
⊢ ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ∈ V |
| 18 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) |
| 19 |
|
eqid |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ‘ 𝑛 ) ) = ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ‘ 𝑛 ) ) |
| 20 |
18 19
|
climmpt |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ∈ V ) → ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ↔ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ‘ 𝑛 ) ) ⇝ 0 ) ) |
| 21 |
15 17 20
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ⇝ 0 ↔ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ‘ 𝑛 ) ) ⇝ 0 ) ) |
| 22 |
13 21
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ ) → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( ( 𝑚 ∈ ℕ ↦ ( 𝐴 / 𝑚 ) ) ‘ 𝑛 ) ) ⇝ 0 ) |
| 23 |
11 22
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ ) → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↦ ( 𝐴 / 𝑛 ) ) ⇝ 0 ) |