| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limcperiod.f |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 2 |
|
limcperiod.assc |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
| 3 |
|
limcperiod.3 |
⊢ ( 𝜑 → 𝐴 ⊆ dom 𝐹 ) |
| 4 |
|
limcperiod.t |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 5 |
|
limcperiod.b |
⊢ 𝐵 = { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑦 + 𝑇 ) } |
| 6 |
|
limcperiod.bss |
⊢ ( 𝜑 → 𝐵 ⊆ dom 𝐹 ) |
| 7 |
|
limcperiod.fper |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
| 8 |
|
limcperiod.clim |
⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐷 ) ) |
| 9 |
|
limccl |
⊢ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐷 ) ⊆ ℂ |
| 10 |
9 8
|
sselid |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 11 |
1 3
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ ℂ ) |
| 12 |
|
limcrcl |
⊢ ( 𝐶 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐷 ) → ( ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℂ ∧ dom ( 𝐹 ↾ 𝐴 ) ⊆ ℂ ∧ 𝐷 ∈ ℂ ) ) |
| 13 |
8 12
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℂ ∧ dom ( 𝐹 ↾ 𝐴 ) ⊆ ℂ ∧ 𝐷 ∈ ℂ ) ) |
| 14 |
13
|
simp3d |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 15 |
11 2 14
|
ellimc3 |
⊢ ( 𝜑 → ( 𝐶 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐷 ) ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑤 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ) ) |
| 16 |
8 15
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 ∈ ℂ ∧ ∀ 𝑤 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ) |
| 17 |
16
|
simprd |
⊢ ( 𝜑 → ∀ 𝑤 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) |
| 18 |
17
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) |
| 19 |
|
simpl1l |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) → 𝜑 ) |
| 20 |
19
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) → 𝜑 ) |
| 21 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) → 𝑏 ∈ 𝐵 ) |
| 22 |
|
id |
⊢ ( 𝑏 ∈ 𝐵 → 𝑏 ∈ 𝐵 ) |
| 23 |
|
oveq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 + 𝑇 ) = ( 𝑧 + 𝑇 ) ) |
| 24 |
23
|
eqeq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 = ( 𝑦 + 𝑇 ) ↔ 𝑥 = ( 𝑧 + 𝑇 ) ) ) |
| 25 |
24
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑦 + 𝑇 ) ↔ ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑧 + 𝑇 ) ) |
| 26 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 = ( 𝑧 + 𝑇 ) ↔ 𝑤 = ( 𝑧 + 𝑇 ) ) ) |
| 27 |
26
|
rexbidv |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑧 ∈ 𝐴 𝑤 = ( 𝑧 + 𝑇 ) ) ) |
| 28 |
25 27
|
bitrid |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑦 + 𝑇 ) ↔ ∃ 𝑧 ∈ 𝐴 𝑤 = ( 𝑧 + 𝑇 ) ) ) |
| 29 |
28
|
cbvrabv |
⊢ { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑦 + 𝑇 ) } = { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ 𝐴 𝑤 = ( 𝑧 + 𝑇 ) } |
| 30 |
5 29
|
eqtri |
⊢ 𝐵 = { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ 𝐴 𝑤 = ( 𝑧 + 𝑇 ) } |
| 31 |
22 30
|
eleqtrdi |
⊢ ( 𝑏 ∈ 𝐵 → 𝑏 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ 𝐴 𝑤 = ( 𝑧 + 𝑇 ) } ) |
| 32 |
|
eqeq1 |
⊢ ( 𝑤 = 𝑏 → ( 𝑤 = ( 𝑧 + 𝑇 ) ↔ 𝑏 = ( 𝑧 + 𝑇 ) ) ) |
| 33 |
32
|
rexbidv |
⊢ ( 𝑤 = 𝑏 → ( ∃ 𝑧 ∈ 𝐴 𝑤 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑧 ∈ 𝐴 𝑏 = ( 𝑧 + 𝑇 ) ) ) |
| 34 |
33
|
elrab |
⊢ ( 𝑏 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ 𝐴 𝑤 = ( 𝑧 + 𝑇 ) } ↔ ( 𝑏 ∈ ℂ ∧ ∃ 𝑧 ∈ 𝐴 𝑏 = ( 𝑧 + 𝑇 ) ) ) |
| 35 |
31 34
|
sylib |
⊢ ( 𝑏 ∈ 𝐵 → ( 𝑏 ∈ ℂ ∧ ∃ 𝑧 ∈ 𝐴 𝑏 = ( 𝑧 + 𝑇 ) ) ) |
| 36 |
35
|
simprd |
⊢ ( 𝑏 ∈ 𝐵 → ∃ 𝑧 ∈ 𝐴 𝑏 = ( 𝑧 + 𝑇 ) ) |
| 37 |
36
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ∃ 𝑧 ∈ 𝐴 𝑏 = ( 𝑧 + 𝑇 ) ) |
| 38 |
|
oveq1 |
⊢ ( 𝑏 = ( 𝑧 + 𝑇 ) → ( 𝑏 − 𝑇 ) = ( ( 𝑧 + 𝑇 ) − 𝑇 ) ) |
| 39 |
38
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑏 = ( 𝑧 + 𝑇 ) ) → ( 𝑏 − 𝑇 ) = ( ( 𝑧 + 𝑇 ) − 𝑇 ) ) |
| 40 |
2
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℂ ) |
| 41 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑇 ∈ ℂ ) |
| 42 |
40 41
|
pncand |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑧 + 𝑇 ) − 𝑇 ) = 𝑧 ) |
| 43 |
42
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑏 = ( 𝑧 + 𝑇 ) ) → ( ( 𝑧 + 𝑇 ) − 𝑇 ) = 𝑧 ) |
| 44 |
39 43
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑏 = ( 𝑧 + 𝑇 ) ) → ( 𝑏 − 𝑇 ) = 𝑧 ) |
| 45 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑏 = ( 𝑧 + 𝑇 ) ) → 𝑧 ∈ 𝐴 ) |
| 46 |
44 45
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ∧ 𝑏 = ( 𝑧 + 𝑇 ) ) → ( 𝑏 − 𝑇 ) ∈ 𝐴 ) |
| 47 |
46
|
3exp |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 → ( 𝑏 = ( 𝑧 + 𝑇 ) → ( 𝑏 − 𝑇 ) ∈ 𝐴 ) ) ) |
| 48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑧 ∈ 𝐴 → ( 𝑏 = ( 𝑧 + 𝑇 ) → ( 𝑏 − 𝑇 ) ∈ 𝐴 ) ) ) |
| 49 |
48
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ∃ 𝑧 ∈ 𝐴 𝑏 = ( 𝑧 + 𝑇 ) → ( 𝑏 − 𝑇 ) ∈ 𝐴 ) ) |
| 50 |
37 49
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 − 𝑇 ) ∈ 𝐴 ) |
| 51 |
5
|
ssrab3 |
⊢ 𝐵 ⊆ ℂ |
| 52 |
51
|
a1i |
⊢ ( 𝜑 → 𝐵 ⊆ ℂ ) |
| 53 |
52
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ ℂ ) |
| 54 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑇 ∈ ℂ ) |
| 55 |
53 54
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 − 𝑇 ) + 𝑇 ) = 𝑏 ) |
| 56 |
55
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 = ( ( 𝑏 − 𝑇 ) + 𝑇 ) ) |
| 57 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑏 − 𝑇 ) → ( 𝑥 + 𝑇 ) = ( ( 𝑏 − 𝑇 ) + 𝑇 ) ) |
| 58 |
57
|
rspceeqv |
⊢ ( ( ( 𝑏 − 𝑇 ) ∈ 𝐴 ∧ 𝑏 = ( ( 𝑏 − 𝑇 ) + 𝑇 ) ) → ∃ 𝑥 ∈ 𝐴 𝑏 = ( 𝑥 + 𝑇 ) ) |
| 59 |
50 56 58
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑏 = ( 𝑥 + 𝑇 ) ) |
| 60 |
20 21 59
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) → ∃ 𝑥 ∈ 𝐴 𝑏 = ( 𝑥 + 𝑇 ) ) |
| 61 |
|
nfv |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) |
| 62 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ 𝐴 𝑥 = ( 𝑦 + 𝑇 ) } |
| 63 |
5 62
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐵 |
| 64 |
63
|
nfcri |
⊢ Ⅎ 𝑥 𝑏 ∈ 𝐵 |
| 65 |
61 64
|
nfan |
⊢ Ⅎ 𝑥 ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) |
| 66 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) |
| 67 |
65 66
|
nfan |
⊢ Ⅎ 𝑥 ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) |
| 68 |
|
nfcv |
⊢ Ⅎ 𝑥 abs |
| 69 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐹 |
| 70 |
69 63
|
nfres |
⊢ Ⅎ 𝑥 ( 𝐹 ↾ 𝐵 ) |
| 71 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑏 |
| 72 |
70 71
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) |
| 73 |
|
nfcv |
⊢ Ⅎ 𝑥 − |
| 74 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐶 |
| 75 |
72 73 74
|
nfov |
⊢ Ⅎ 𝑥 ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) |
| 76 |
68 75
|
nffv |
⊢ Ⅎ 𝑥 ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) |
| 77 |
|
nfcv |
⊢ Ⅎ 𝑥 < |
| 78 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑤 |
| 79 |
76 77 78
|
nfbr |
⊢ Ⅎ 𝑥 ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) < 𝑤 |
| 80 |
|
simp3 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → 𝑏 = ( 𝑥 + 𝑇 ) ) |
| 81 |
80
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) = ( ( 𝐹 ↾ 𝐵 ) ‘ ( 𝑥 + 𝑇 ) ) ) |
| 82 |
21
|
3ad2ant1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → 𝑏 ∈ 𝐵 ) |
| 83 |
80 82
|
eqeltrrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( 𝑥 + 𝑇 ) ∈ 𝐵 ) |
| 84 |
83
|
fvresd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( ( 𝐹 ↾ 𝐵 ) ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) ) |
| 85 |
20
|
3ad2ant1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → 𝜑 ) |
| 86 |
|
simp2 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → 𝑥 ∈ 𝐴 ) |
| 87 |
|
eleq1w |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) |
| 88 |
87
|
anbi2d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ) ) |
| 89 |
|
fvoveq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) ) |
| 90 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 91 |
89 90
|
eqeq12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) ) |
| 92 |
88 91
|
imbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑦 + 𝑇 ) ) = ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 93 |
92 7
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 94 |
85 86 93
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 95 |
86
|
fvresd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 96 |
94 95
|
eqtr4d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) ) |
| 97 |
81 84 96
|
3eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) = ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) ) |
| 98 |
97
|
fvoveq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) = ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) − 𝐶 ) ) ) |
| 99 |
|
simpll3 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) → ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) |
| 100 |
99
|
3ad2ant1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) |
| 101 |
100 86
|
jca |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ∧ 𝑥 ∈ 𝐴 ) ) |
| 102 |
|
simp1rl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → 𝑏 ≠ ( 𝐷 + 𝑇 ) ) |
| 103 |
102
|
neneqd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ¬ 𝑏 = ( 𝐷 + 𝑇 ) ) |
| 104 |
|
oveq1 |
⊢ ( 𝑥 = 𝐷 → ( 𝑥 + 𝑇 ) = ( 𝐷 + 𝑇 ) ) |
| 105 |
80 104
|
sylan9eq |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) ∧ 𝑥 = 𝐷 ) → 𝑏 = ( 𝐷 + 𝑇 ) ) |
| 106 |
103 105
|
mtand |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ¬ 𝑥 = 𝐷 ) |
| 107 |
106
|
neqned |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → 𝑥 ≠ 𝐷 ) |
| 108 |
80
|
oveq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( 𝑏 − ( 𝐷 + 𝑇 ) ) = ( ( 𝑥 + 𝑇 ) − ( 𝐷 + 𝑇 ) ) ) |
| 109 |
2
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℂ ) |
| 110 |
85 86 109
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → 𝑥 ∈ ℂ ) |
| 111 |
85 14
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → 𝐷 ∈ ℂ ) |
| 112 |
85 4
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → 𝑇 ∈ ℂ ) |
| 113 |
110 111 112
|
pnpcan2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( ( 𝑥 + 𝑇 ) − ( 𝐷 + 𝑇 ) ) = ( 𝑥 − 𝐷 ) ) |
| 114 |
108 113
|
eqtr2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( 𝑥 − 𝐷 ) = ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) |
| 115 |
114
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( abs ‘ ( 𝑥 − 𝐷 ) ) = ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) ) |
| 116 |
|
simp1rr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) |
| 117 |
115 116
|
eqbrtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( abs ‘ ( 𝑥 − 𝐷 ) ) < 𝑧 ) |
| 118 |
107 117
|
jca |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( 𝑥 ≠ 𝐷 ∧ ( abs ‘ ( 𝑥 − 𝐷 ) ) < 𝑧 ) ) |
| 119 |
|
neeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ≠ 𝐷 ↔ 𝑥 ≠ 𝐷 ) ) |
| 120 |
|
fvoveq1 |
⊢ ( 𝑦 = 𝑥 → ( abs ‘ ( 𝑦 − 𝐷 ) ) = ( abs ‘ ( 𝑥 − 𝐷 ) ) ) |
| 121 |
120
|
breq1d |
⊢ ( 𝑦 = 𝑥 → ( ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ↔ ( abs ‘ ( 𝑥 − 𝐷 ) ) < 𝑧 ) ) |
| 122 |
119 121
|
anbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) ↔ ( 𝑥 ≠ 𝐷 ∧ ( abs ‘ ( 𝑥 − 𝐷 ) ) < 𝑧 ) ) ) |
| 123 |
122
|
imbrov2fvoveq |
⊢ ( 𝑦 = 𝑥 → ( ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ↔ ( ( 𝑥 ≠ 𝐷 ∧ ( abs ‘ ( 𝑥 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) − 𝐶 ) ) < 𝑤 ) ) ) |
| 124 |
123
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ≠ 𝐷 ∧ ( abs ‘ ( 𝑥 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) − 𝐶 ) ) < 𝑤 ) ) |
| 125 |
101 118 124
|
sylc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) − 𝐶 ) ) < 𝑤 ) |
| 126 |
98 125
|
eqbrtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑏 = ( 𝑥 + 𝑇 ) ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) < 𝑤 ) |
| 127 |
126
|
3exp |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) → ( 𝑥 ∈ 𝐴 → ( 𝑏 = ( 𝑥 + 𝑇 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) < 𝑤 ) ) ) |
| 128 |
67 79 127
|
rexlimd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) → ( ∃ 𝑥 ∈ 𝐴 𝑏 = ( 𝑥 + 𝑇 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) < 𝑤 ) ) |
| 129 |
60 128
|
mpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) < 𝑤 ) |
| 130 |
129
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) < 𝑤 ) ) |
| 131 |
130
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ+ ∧ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) ) → ∀ 𝑏 ∈ 𝐵 ( ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) < 𝑤 ) ) |
| 132 |
131
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ( 𝑧 ∈ ℝ+ → ( ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) → ∀ 𝑏 ∈ 𝐵 ( ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) < 𝑤 ) ) ) ) |
| 133 |
132
|
reximdvai |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ( ∃ 𝑧 ∈ ℝ+ ∀ 𝑦 ∈ 𝐴 ( ( 𝑦 ≠ 𝐷 ∧ ( abs ‘ ( 𝑦 − 𝐷 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑦 ) − 𝐶 ) ) < 𝑤 ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑏 ∈ 𝐵 ( ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) < 𝑤 ) ) ) |
| 134 |
18 133
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ∀ 𝑏 ∈ 𝐵 ( ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) < 𝑤 ) ) |
| 135 |
134
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑤 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑏 ∈ 𝐵 ( ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) < 𝑤 ) ) |
| 136 |
1 6
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ ℂ ) |
| 137 |
14 4
|
addcld |
⊢ ( 𝜑 → ( 𝐷 + 𝑇 ) ∈ ℂ ) |
| 138 |
136 52 137
|
ellimc3 |
⊢ ( 𝜑 → ( 𝐶 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ ( 𝐷 + 𝑇 ) ) ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑤 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑏 ∈ 𝐵 ( ( 𝑏 ≠ ( 𝐷 + 𝑇 ) ∧ ( abs ‘ ( 𝑏 − ( 𝐷 + 𝑇 ) ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑏 ) − 𝐶 ) ) < 𝑤 ) ) ) ) |
| 139 |
10 135 138
|
mpbir2and |
⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ ( 𝐷 + 𝑇 ) ) ) |