| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limcperiod.f |
|- ( ph -> F : dom F --> CC ) |
| 2 |
|
limcperiod.assc |
|- ( ph -> A C_ CC ) |
| 3 |
|
limcperiod.3 |
|- ( ph -> A C_ dom F ) |
| 4 |
|
limcperiod.t |
|- ( ph -> T e. CC ) |
| 5 |
|
limcperiod.b |
|- B = { x e. CC | E. y e. A x = ( y + T ) } |
| 6 |
|
limcperiod.bss |
|- ( ph -> B C_ dom F ) |
| 7 |
|
limcperiod.fper |
|- ( ( ph /\ y e. A ) -> ( F ` ( y + T ) ) = ( F ` y ) ) |
| 8 |
|
limcperiod.clim |
|- ( ph -> C e. ( ( F |` A ) limCC D ) ) |
| 9 |
|
limccl |
|- ( ( F |` A ) limCC D ) C_ CC |
| 10 |
9 8
|
sselid |
|- ( ph -> C e. CC ) |
| 11 |
1 3
|
fssresd |
|- ( ph -> ( F |` A ) : A --> CC ) |
| 12 |
|
limcrcl |
|- ( C e. ( ( F |` A ) limCC D ) -> ( ( F |` A ) : dom ( F |` A ) --> CC /\ dom ( F |` A ) C_ CC /\ D e. CC ) ) |
| 13 |
8 12
|
syl |
|- ( ph -> ( ( F |` A ) : dom ( F |` A ) --> CC /\ dom ( F |` A ) C_ CC /\ D e. CC ) ) |
| 14 |
13
|
simp3d |
|- ( ph -> D e. CC ) |
| 15 |
11 2 14
|
ellimc3 |
|- ( ph -> ( C e. ( ( F |` A ) limCC D ) <-> ( C e. CC /\ A. w e. RR+ E. z e. RR+ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) ) ) |
| 16 |
8 15
|
mpbid |
|- ( ph -> ( C e. CC /\ A. w e. RR+ E. z e. RR+ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) ) |
| 17 |
16
|
simprd |
|- ( ph -> A. w e. RR+ E. z e. RR+ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) |
| 18 |
17
|
r19.21bi |
|- ( ( ph /\ w e. RR+ ) -> E. z e. RR+ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) |
| 19 |
|
simpl1l |
|- ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) -> ph ) |
| 20 |
19
|
adantr |
|- ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) -> ph ) |
| 21 |
|
simplr |
|- ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) -> b e. B ) |
| 22 |
|
id |
|- ( b e. B -> b e. B ) |
| 23 |
|
oveq1 |
|- ( y = z -> ( y + T ) = ( z + T ) ) |
| 24 |
23
|
eqeq2d |
|- ( y = z -> ( x = ( y + T ) <-> x = ( z + T ) ) ) |
| 25 |
24
|
cbvrexvw |
|- ( E. y e. A x = ( y + T ) <-> E. z e. A x = ( z + T ) ) |
| 26 |
|
eqeq1 |
|- ( x = w -> ( x = ( z + T ) <-> w = ( z + T ) ) ) |
| 27 |
26
|
rexbidv |
|- ( x = w -> ( E. z e. A x = ( z + T ) <-> E. z e. A w = ( z + T ) ) ) |
| 28 |
25 27
|
bitrid |
|- ( x = w -> ( E. y e. A x = ( y + T ) <-> E. z e. A w = ( z + T ) ) ) |
| 29 |
28
|
cbvrabv |
|- { x e. CC | E. y e. A x = ( y + T ) } = { w e. CC | E. z e. A w = ( z + T ) } |
| 30 |
5 29
|
eqtri |
|- B = { w e. CC | E. z e. A w = ( z + T ) } |
| 31 |
22 30
|
eleqtrdi |
|- ( b e. B -> b e. { w e. CC | E. z e. A w = ( z + T ) } ) |
| 32 |
|
eqeq1 |
|- ( w = b -> ( w = ( z + T ) <-> b = ( z + T ) ) ) |
| 33 |
32
|
rexbidv |
|- ( w = b -> ( E. z e. A w = ( z + T ) <-> E. z e. A b = ( z + T ) ) ) |
| 34 |
33
|
elrab |
|- ( b e. { w e. CC | E. z e. A w = ( z + T ) } <-> ( b e. CC /\ E. z e. A b = ( z + T ) ) ) |
| 35 |
31 34
|
sylib |
|- ( b e. B -> ( b e. CC /\ E. z e. A b = ( z + T ) ) ) |
| 36 |
35
|
simprd |
|- ( b e. B -> E. z e. A b = ( z + T ) ) |
| 37 |
36
|
adantl |
|- ( ( ph /\ b e. B ) -> E. z e. A b = ( z + T ) ) |
| 38 |
|
oveq1 |
|- ( b = ( z + T ) -> ( b - T ) = ( ( z + T ) - T ) ) |
| 39 |
38
|
3ad2ant3 |
|- ( ( ph /\ z e. A /\ b = ( z + T ) ) -> ( b - T ) = ( ( z + T ) - T ) ) |
| 40 |
2
|
sselda |
|- ( ( ph /\ z e. A ) -> z e. CC ) |
| 41 |
4
|
adantr |
|- ( ( ph /\ z e. A ) -> T e. CC ) |
| 42 |
40 41
|
pncand |
|- ( ( ph /\ z e. A ) -> ( ( z + T ) - T ) = z ) |
| 43 |
42
|
3adant3 |
|- ( ( ph /\ z e. A /\ b = ( z + T ) ) -> ( ( z + T ) - T ) = z ) |
| 44 |
39 43
|
eqtrd |
|- ( ( ph /\ z e. A /\ b = ( z + T ) ) -> ( b - T ) = z ) |
| 45 |
|
simp2 |
|- ( ( ph /\ z e. A /\ b = ( z + T ) ) -> z e. A ) |
| 46 |
44 45
|
eqeltrd |
|- ( ( ph /\ z e. A /\ b = ( z + T ) ) -> ( b - T ) e. A ) |
| 47 |
46
|
3exp |
|- ( ph -> ( z e. A -> ( b = ( z + T ) -> ( b - T ) e. A ) ) ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ b e. B ) -> ( z e. A -> ( b = ( z + T ) -> ( b - T ) e. A ) ) ) |
| 49 |
48
|
rexlimdv |
|- ( ( ph /\ b e. B ) -> ( E. z e. A b = ( z + T ) -> ( b - T ) e. A ) ) |
| 50 |
37 49
|
mpd |
|- ( ( ph /\ b e. B ) -> ( b - T ) e. A ) |
| 51 |
5
|
ssrab3 |
|- B C_ CC |
| 52 |
51
|
a1i |
|- ( ph -> B C_ CC ) |
| 53 |
52
|
sselda |
|- ( ( ph /\ b e. B ) -> b e. CC ) |
| 54 |
4
|
adantr |
|- ( ( ph /\ b e. B ) -> T e. CC ) |
| 55 |
53 54
|
npcand |
|- ( ( ph /\ b e. B ) -> ( ( b - T ) + T ) = b ) |
| 56 |
55
|
eqcomd |
|- ( ( ph /\ b e. B ) -> b = ( ( b - T ) + T ) ) |
| 57 |
|
oveq1 |
|- ( x = ( b - T ) -> ( x + T ) = ( ( b - T ) + T ) ) |
| 58 |
57
|
rspceeqv |
|- ( ( ( b - T ) e. A /\ b = ( ( b - T ) + T ) ) -> E. x e. A b = ( x + T ) ) |
| 59 |
50 56 58
|
syl2anc |
|- ( ( ph /\ b e. B ) -> E. x e. A b = ( x + T ) ) |
| 60 |
20 21 59
|
syl2anc |
|- ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) -> E. x e. A b = ( x + T ) ) |
| 61 |
|
nfv |
|- F/ x ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) |
| 62 |
|
nfrab1 |
|- F/_ x { x e. CC | E. y e. A x = ( y + T ) } |
| 63 |
5 62
|
nfcxfr |
|- F/_ x B |
| 64 |
63
|
nfcri |
|- F/ x b e. B |
| 65 |
61 64
|
nfan |
|- F/ x ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) |
| 66 |
|
nfv |
|- F/ x ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) |
| 67 |
65 66
|
nfan |
|- F/ x ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) |
| 68 |
|
nfcv |
|- F/_ x abs |
| 69 |
|
nfcv |
|- F/_ x F |
| 70 |
69 63
|
nfres |
|- F/_ x ( F |` B ) |
| 71 |
|
nfcv |
|- F/_ x b |
| 72 |
70 71
|
nffv |
|- F/_ x ( ( F |` B ) ` b ) |
| 73 |
|
nfcv |
|- F/_ x - |
| 74 |
|
nfcv |
|- F/_ x C |
| 75 |
72 73 74
|
nfov |
|- F/_ x ( ( ( F |` B ) ` b ) - C ) |
| 76 |
68 75
|
nffv |
|- F/_ x ( abs ` ( ( ( F |` B ) ` b ) - C ) ) |
| 77 |
|
nfcv |
|- F/_ x < |
| 78 |
|
nfcv |
|- F/_ x w |
| 79 |
76 77 78
|
nfbr |
|- F/ x ( abs ` ( ( ( F |` B ) ` b ) - C ) ) < w |
| 80 |
|
simp3 |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> b = ( x + T ) ) |
| 81 |
80
|
fveq2d |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( ( F |` B ) ` b ) = ( ( F |` B ) ` ( x + T ) ) ) |
| 82 |
21
|
3ad2ant1 |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> b e. B ) |
| 83 |
80 82
|
eqeltrrd |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( x + T ) e. B ) |
| 84 |
83
|
fvresd |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( ( F |` B ) ` ( x + T ) ) = ( F ` ( x + T ) ) ) |
| 85 |
20
|
3ad2ant1 |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ph ) |
| 86 |
|
simp2 |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> x e. A ) |
| 87 |
|
eleq1w |
|- ( y = x -> ( y e. A <-> x e. A ) ) |
| 88 |
87
|
anbi2d |
|- ( y = x -> ( ( ph /\ y e. A ) <-> ( ph /\ x e. A ) ) ) |
| 89 |
|
fvoveq1 |
|- ( y = x -> ( F ` ( y + T ) ) = ( F ` ( x + T ) ) ) |
| 90 |
|
fveq2 |
|- ( y = x -> ( F ` y ) = ( F ` x ) ) |
| 91 |
89 90
|
eqeq12d |
|- ( y = x -> ( ( F ` ( y + T ) ) = ( F ` y ) <-> ( F ` ( x + T ) ) = ( F ` x ) ) ) |
| 92 |
88 91
|
imbi12d |
|- ( y = x -> ( ( ( ph /\ y e. A ) -> ( F ` ( y + T ) ) = ( F ` y ) ) <-> ( ( ph /\ x e. A ) -> ( F ` ( x + T ) ) = ( F ` x ) ) ) ) |
| 93 |
92 7
|
chvarvv |
|- ( ( ph /\ x e. A ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 94 |
85 86 93
|
syl2anc |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 95 |
86
|
fvresd |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( ( F |` A ) ` x ) = ( F ` x ) ) |
| 96 |
94 95
|
eqtr4d |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( F ` ( x + T ) ) = ( ( F |` A ) ` x ) ) |
| 97 |
81 84 96
|
3eqtrd |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( ( F |` B ) ` b ) = ( ( F |` A ) ` x ) ) |
| 98 |
97
|
fvoveq1d |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( abs ` ( ( ( F |` B ) ` b ) - C ) ) = ( abs ` ( ( ( F |` A ) ` x ) - C ) ) ) |
| 99 |
|
simpll3 |
|- ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) -> A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) |
| 100 |
99
|
3ad2ant1 |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) |
| 101 |
100 86
|
jca |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) /\ x e. A ) ) |
| 102 |
|
simp1rl |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> b =/= ( D + T ) ) |
| 103 |
102
|
neneqd |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> -. b = ( D + T ) ) |
| 104 |
|
oveq1 |
|- ( x = D -> ( x + T ) = ( D + T ) ) |
| 105 |
80 104
|
sylan9eq |
|- ( ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) /\ x = D ) -> b = ( D + T ) ) |
| 106 |
103 105
|
mtand |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> -. x = D ) |
| 107 |
106
|
neqned |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> x =/= D ) |
| 108 |
80
|
oveq1d |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( b - ( D + T ) ) = ( ( x + T ) - ( D + T ) ) ) |
| 109 |
2
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. CC ) |
| 110 |
85 86 109
|
syl2anc |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> x e. CC ) |
| 111 |
85 14
|
syl |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> D e. CC ) |
| 112 |
85 4
|
syl |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> T e. CC ) |
| 113 |
110 111 112
|
pnpcan2d |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( ( x + T ) - ( D + T ) ) = ( x - D ) ) |
| 114 |
108 113
|
eqtr2d |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( x - D ) = ( b - ( D + T ) ) ) |
| 115 |
114
|
fveq2d |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( abs ` ( x - D ) ) = ( abs ` ( b - ( D + T ) ) ) ) |
| 116 |
|
simp1rr |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( abs ` ( b - ( D + T ) ) ) < z ) |
| 117 |
115 116
|
eqbrtrd |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( abs ` ( x - D ) ) < z ) |
| 118 |
107 117
|
jca |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( x =/= D /\ ( abs ` ( x - D ) ) < z ) ) |
| 119 |
|
neeq1 |
|- ( y = x -> ( y =/= D <-> x =/= D ) ) |
| 120 |
|
fvoveq1 |
|- ( y = x -> ( abs ` ( y - D ) ) = ( abs ` ( x - D ) ) ) |
| 121 |
120
|
breq1d |
|- ( y = x -> ( ( abs ` ( y - D ) ) < z <-> ( abs ` ( x - D ) ) < z ) ) |
| 122 |
119 121
|
anbi12d |
|- ( y = x -> ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) <-> ( x =/= D /\ ( abs ` ( x - D ) ) < z ) ) ) |
| 123 |
122
|
imbrov2fvoveq |
|- ( y = x -> ( ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) <-> ( ( x =/= D /\ ( abs ` ( x - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` x ) - C ) ) < w ) ) ) |
| 124 |
123
|
rspccva |
|- ( ( A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) /\ x e. A ) -> ( ( x =/= D /\ ( abs ` ( x - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` x ) - C ) ) < w ) ) |
| 125 |
101 118 124
|
sylc |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( abs ` ( ( ( F |` A ) ` x ) - C ) ) < w ) |
| 126 |
98 125
|
eqbrtrd |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) /\ x e. A /\ b = ( x + T ) ) -> ( abs ` ( ( ( F |` B ) ` b ) - C ) ) < w ) |
| 127 |
126
|
3exp |
|- ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) -> ( x e. A -> ( b = ( x + T ) -> ( abs ` ( ( ( F |` B ) ` b ) - C ) ) < w ) ) ) |
| 128 |
67 79 127
|
rexlimd |
|- ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) -> ( E. x e. A b = ( x + T ) -> ( abs ` ( ( ( F |` B ) ` b ) - C ) ) < w ) ) |
| 129 |
60 128
|
mpd |
|- ( ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) /\ ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) ) -> ( abs ` ( ( ( F |` B ) ` b ) - C ) ) < w ) |
| 130 |
129
|
ex |
|- ( ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) /\ b e. B ) -> ( ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) -> ( abs ` ( ( ( F |` B ) ` b ) - C ) ) < w ) ) |
| 131 |
130
|
ralrimiva |
|- ( ( ( ph /\ w e. RR+ ) /\ z e. RR+ /\ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) ) -> A. b e. B ( ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) -> ( abs ` ( ( ( F |` B ) ` b ) - C ) ) < w ) ) |
| 132 |
131
|
3exp |
|- ( ( ph /\ w e. RR+ ) -> ( z e. RR+ -> ( A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) -> A. b e. B ( ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) -> ( abs ` ( ( ( F |` B ) ` b ) - C ) ) < w ) ) ) ) |
| 133 |
132
|
reximdvai |
|- ( ( ph /\ w e. RR+ ) -> ( E. z e. RR+ A. y e. A ( ( y =/= D /\ ( abs ` ( y - D ) ) < z ) -> ( abs ` ( ( ( F |` A ) ` y ) - C ) ) < w ) -> E. z e. RR+ A. b e. B ( ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) -> ( abs ` ( ( ( F |` B ) ` b ) - C ) ) < w ) ) ) |
| 134 |
18 133
|
mpd |
|- ( ( ph /\ w e. RR+ ) -> E. z e. RR+ A. b e. B ( ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) -> ( abs ` ( ( ( F |` B ) ` b ) - C ) ) < w ) ) |
| 135 |
134
|
ralrimiva |
|- ( ph -> A. w e. RR+ E. z e. RR+ A. b e. B ( ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) -> ( abs ` ( ( ( F |` B ) ` b ) - C ) ) < w ) ) |
| 136 |
1 6
|
fssresd |
|- ( ph -> ( F |` B ) : B --> CC ) |
| 137 |
14 4
|
addcld |
|- ( ph -> ( D + T ) e. CC ) |
| 138 |
136 52 137
|
ellimc3 |
|- ( ph -> ( C e. ( ( F |` B ) limCC ( D + T ) ) <-> ( C e. CC /\ A. w e. RR+ E. z e. RR+ A. b e. B ( ( b =/= ( D + T ) /\ ( abs ` ( b - ( D + T ) ) ) < z ) -> ( abs ` ( ( ( F |` B ) ` b ) - C ) ) < w ) ) ) ) |
| 139 |
10 135 138
|
mpbir2and |
|- ( ph -> C e. ( ( F |` B ) limCC ( D + T ) ) ) |