| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limcrecl.1 |
|- ( ph -> F : A --> RR ) |
| 2 |
|
limcrecl.2 |
|- ( ph -> A C_ CC ) |
| 3 |
|
limcrecl.3 |
|- ( ph -> B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` A ) ) |
| 4 |
|
limcrecl.4 |
|- ( ph -> L e. ( F limCC B ) ) |
| 5 |
4
|
adantr |
|- ( ( ph /\ -. L e. RR ) -> L e. ( F limCC B ) ) |
| 6 |
|
limccl |
|- ( F limCC B ) C_ CC |
| 7 |
6 4
|
sselid |
|- ( ph -> L e. CC ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ -. L e. RR ) -> L e. CC ) |
| 9 |
|
simpr |
|- ( ( ph /\ -. L e. RR ) -> -. L e. RR ) |
| 10 |
8 9
|
eldifd |
|- ( ( ph /\ -. L e. RR ) -> L e. ( CC \ RR ) ) |
| 11 |
10
|
dstregt0 |
|- ( ( ph /\ -. L e. RR ) -> E. x e. RR+ A. w e. RR x < ( abs ` ( L - w ) ) ) |
| 12 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
| 13 |
12
|
a1i |
|- ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
| 14 |
2
|
ad4antr |
|- ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) -> A C_ CC ) |
| 15 |
14
|
ssdifssd |
|- ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) -> ( A \ { B } ) C_ CC ) |
| 16 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 17 |
16
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
| 18 |
17
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. Top ) |
| 19 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
| 20 |
2 19
|
sseqtrdi |
|- ( ph -> A C_ U. ( TopOpen ` CCfld ) ) |
| 21 |
|
eqid |
|- U. ( TopOpen ` CCfld ) = U. ( TopOpen ` CCfld ) |
| 22 |
21
|
lpdifsn |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ A C_ U. ( TopOpen ` CCfld ) ) -> ( B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` A ) <-> B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A \ { B } ) ) ) ) |
| 23 |
18 20 22
|
syl2anc |
|- ( ph -> ( B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` A ) <-> B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A \ { B } ) ) ) ) |
| 24 |
3 23
|
mpbid |
|- ( ph -> B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A \ { B } ) ) ) |
| 25 |
24
|
ad4antr |
|- ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) -> B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A \ { B } ) ) ) |
| 26 |
|
simpr |
|- ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) -> y e. RR+ ) |
| 27 |
16
|
cnfldtopn |
|- ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) |
| 28 |
27
|
lpbl |
|- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ ( A \ { B } ) C_ CC /\ B e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( A \ { B } ) ) ) /\ y e. RR+ ) -> E. z e. ( A \ { B } ) z e. ( B ( ball ` ( abs o. - ) ) y ) ) |
| 29 |
13 15 25 26 28
|
syl31anc |
|- ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) -> E. z e. ( A \ { B } ) z e. ( B ( ball ` ( abs o. - ) ) y ) ) |
| 30 |
|
eldif |
|- ( z e. ( A \ { B } ) <-> ( z e. A /\ -. z e. { B } ) ) |
| 31 |
30
|
anbi1i |
|- ( ( z e. ( A \ { B } ) /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) <-> ( ( z e. A /\ -. z e. { B } ) /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) |
| 32 |
|
anass |
|- ( ( ( z e. A /\ -. z e. { B } ) /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) <-> ( z e. A /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) ) |
| 33 |
31 32
|
bitri |
|- ( ( z e. ( A \ { B } ) /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) <-> ( z e. A /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) ) |
| 34 |
33
|
rexbii2 |
|- ( E. z e. ( A \ { B } ) z e. ( B ( ball ` ( abs o. - ) ) y ) <-> E. z e. A ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) |
| 35 |
29 34
|
sylib |
|- ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) -> E. z e. A ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) |
| 36 |
|
simprl |
|- ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> -. z e. { B } ) |
| 37 |
|
velsn |
|- ( z e. { B } <-> z = B ) |
| 38 |
37
|
necon3bbii |
|- ( -. z e. { B } <-> z =/= B ) |
| 39 |
36 38
|
sylib |
|- ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> z =/= B ) |
| 40 |
|
simp-5l |
|- ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> ph ) |
| 41 |
|
simplr |
|- ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> y e. RR+ ) |
| 42 |
|
simprr |
|- ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> z e. ( B ( ball ` ( abs o. - ) ) y ) ) |
| 43 |
|
simp3 |
|- ( ( ph /\ y e. RR+ /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> z e. ( B ( ball ` ( abs o. - ) ) y ) ) |
| 44 |
12
|
a1i |
|- ( ( ph /\ y e. RR+ /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
| 45 |
19
|
lpss |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ A C_ CC ) -> ( ( limPt ` ( TopOpen ` CCfld ) ) ` A ) C_ CC ) |
| 46 |
18 2 45
|
syl2anc |
|- ( ph -> ( ( limPt ` ( TopOpen ` CCfld ) ) ` A ) C_ CC ) |
| 47 |
46 3
|
sseldd |
|- ( ph -> B e. CC ) |
| 48 |
47
|
3ad2ant1 |
|- ( ( ph /\ y e. RR+ /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> B e. CC ) |
| 49 |
|
rpxr |
|- ( y e. RR+ -> y e. RR* ) |
| 50 |
49
|
3ad2ant2 |
|- ( ( ph /\ y e. RR+ /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> y e. RR* ) |
| 51 |
|
elbl |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ B e. CC /\ y e. RR* ) -> ( z e. ( B ( ball ` ( abs o. - ) ) y ) <-> ( z e. CC /\ ( B ( abs o. - ) z ) < y ) ) ) |
| 52 |
44 48 50 51
|
syl3anc |
|- ( ( ph /\ y e. RR+ /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> ( z e. ( B ( ball ` ( abs o. - ) ) y ) <-> ( z e. CC /\ ( B ( abs o. - ) z ) < y ) ) ) |
| 53 |
43 52
|
mpbid |
|- ( ( ph /\ y e. RR+ /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> ( z e. CC /\ ( B ( abs o. - ) z ) < y ) ) |
| 54 |
53
|
simpld |
|- ( ( ph /\ y e. RR+ /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> z e. CC ) |
| 55 |
54 48
|
abssubd |
|- ( ( ph /\ y e. RR+ /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> ( abs ` ( z - B ) ) = ( abs ` ( B - z ) ) ) |
| 56 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
| 57 |
56
|
cnmetdval |
|- ( ( B e. CC /\ z e. CC ) -> ( B ( abs o. - ) z ) = ( abs ` ( B - z ) ) ) |
| 58 |
48 54 57
|
syl2anc |
|- ( ( ph /\ y e. RR+ /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> ( B ( abs o. - ) z ) = ( abs ` ( B - z ) ) ) |
| 59 |
53
|
simprd |
|- ( ( ph /\ y e. RR+ /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> ( B ( abs o. - ) z ) < y ) |
| 60 |
58 59
|
eqbrtrrd |
|- ( ( ph /\ y e. RR+ /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> ( abs ` ( B - z ) ) < y ) |
| 61 |
55 60
|
eqbrtrd |
|- ( ( ph /\ y e. RR+ /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> ( abs ` ( z - B ) ) < y ) |
| 62 |
40 41 42 61
|
syl3anc |
|- ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> ( abs ` ( z - B ) ) < y ) |
| 63 |
39 62
|
jca |
|- ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> ( z =/= B /\ ( abs ` ( z - B ) ) < y ) ) |
| 64 |
63
|
adantlr |
|- ( ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ z e. A ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> ( z =/= B /\ ( abs ` ( z - B ) ) < y ) ) |
| 65 |
40
|
adantlr |
|- ( ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ z e. A ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> ph ) |
| 66 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ z e. A ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> z e. A ) |
| 67 |
65 66
|
jca |
|- ( ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ z e. A ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> ( ph /\ z e. A ) ) |
| 68 |
|
simp-5r |
|- ( ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ z e. A ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> x e. RR+ ) |
| 69 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ z e. A ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> A. w e. RR x < ( abs ` ( L - w ) ) ) |
| 70 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
| 71 |
70
|
ad2antlr |
|- ( ( ( ( ph /\ z e. A ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> x e. RR ) |
| 72 |
1
|
ffvelcdmda |
|- ( ( ph /\ z e. A ) -> ( F ` z ) e. RR ) |
| 73 |
72
|
recnd |
|- ( ( ph /\ z e. A ) -> ( F ` z ) e. CC ) |
| 74 |
73
|
ad2antrr |
|- ( ( ( ( ph /\ z e. A ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> ( F ` z ) e. CC ) |
| 75 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ z e. A ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> L e. CC ) |
| 76 |
74 75
|
subcld |
|- ( ( ( ( ph /\ z e. A ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> ( ( F ` z ) - L ) e. CC ) |
| 77 |
76
|
abscld |
|- ( ( ( ( ph /\ z e. A ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> ( abs ` ( ( F ` z ) - L ) ) e. RR ) |
| 78 |
72
|
adantr |
|- ( ( ( ph /\ z e. A ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> ( F ` z ) e. RR ) |
| 79 |
|
nfv |
|- F/ w ph |
| 80 |
|
nfra1 |
|- F/ w A. w e. RR x < ( abs ` ( L - w ) ) |
| 81 |
79 80
|
nfan |
|- F/ w ( ph /\ A. w e. RR x < ( abs ` ( L - w ) ) ) |
| 82 |
|
rspa |
|- ( ( A. w e. RR x < ( abs ` ( L - w ) ) /\ w e. RR ) -> x < ( abs ` ( L - w ) ) ) |
| 83 |
82
|
adantll |
|- ( ( ( ph /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ w e. RR ) -> x < ( abs ` ( L - w ) ) ) |
| 84 |
7
|
adantr |
|- ( ( ph /\ w e. RR ) -> L e. CC ) |
| 85 |
|
ax-resscn |
|- RR C_ CC |
| 86 |
85
|
a1i |
|- ( ph -> RR C_ CC ) |
| 87 |
86
|
sselda |
|- ( ( ph /\ w e. RR ) -> w e. CC ) |
| 88 |
84 87
|
abssubd |
|- ( ( ph /\ w e. RR ) -> ( abs ` ( L - w ) ) = ( abs ` ( w - L ) ) ) |
| 89 |
88
|
adantlr |
|- ( ( ( ph /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ w e. RR ) -> ( abs ` ( L - w ) ) = ( abs ` ( w - L ) ) ) |
| 90 |
83 89
|
breqtrd |
|- ( ( ( ph /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ w e. RR ) -> x < ( abs ` ( w - L ) ) ) |
| 91 |
90
|
ex |
|- ( ( ph /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> ( w e. RR -> x < ( abs ` ( w - L ) ) ) ) |
| 92 |
81 91
|
ralrimi |
|- ( ( ph /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> A. w e. RR x < ( abs ` ( w - L ) ) ) |
| 93 |
92
|
adantlr |
|- ( ( ( ph /\ z e. A ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> A. w e. RR x < ( abs ` ( w - L ) ) ) |
| 94 |
|
fvoveq1 |
|- ( w = ( F ` z ) -> ( abs ` ( w - L ) ) = ( abs ` ( ( F ` z ) - L ) ) ) |
| 95 |
94
|
breq2d |
|- ( w = ( F ` z ) -> ( x < ( abs ` ( w - L ) ) <-> x < ( abs ` ( ( F ` z ) - L ) ) ) ) |
| 96 |
95
|
rspcv |
|- ( ( F ` z ) e. RR -> ( A. w e. RR x < ( abs ` ( w - L ) ) -> x < ( abs ` ( ( F ` z ) - L ) ) ) ) |
| 97 |
78 93 96
|
sylc |
|- ( ( ( ph /\ z e. A ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> x < ( abs ` ( ( F ` z ) - L ) ) ) |
| 98 |
97
|
adantlr |
|- ( ( ( ( ph /\ z e. A ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> x < ( abs ` ( ( F ` z ) - L ) ) ) |
| 99 |
71 77 98
|
ltnsymd |
|- ( ( ( ( ph /\ z e. A ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> -. ( abs ` ( ( F ` z ) - L ) ) < x ) |
| 100 |
67 68 69 99
|
syl21anc |
|- ( ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ z e. A ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> -. ( abs ` ( ( F ` z ) - L ) ) < x ) |
| 101 |
64 100
|
jcnd |
|- ( ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ z e. A ) /\ ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) ) -> -. ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
| 102 |
101
|
ex |
|- ( ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) /\ z e. A ) -> ( ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> -. ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) ) |
| 103 |
102
|
reximdva |
|- ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) -> ( E. z e. A ( -. z e. { B } /\ z e. ( B ( ball ` ( abs o. - ) ) y ) ) -> E. z e. A -. ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) ) |
| 104 |
35 103
|
mpd |
|- ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) -> E. z e. A -. ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
| 105 |
|
rexnal |
|- ( E. z e. A -. ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) <-> -. A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
| 106 |
104 105
|
sylib |
|- ( ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) /\ y e. RR+ ) -> -. A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
| 107 |
106
|
nrexdv |
|- ( ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) /\ A. w e. RR x < ( abs ` ( L - w ) ) ) -> -. E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
| 108 |
107
|
ex |
|- ( ( ( ph /\ -. L e. RR ) /\ x e. RR+ ) -> ( A. w e. RR x < ( abs ` ( L - w ) ) -> -. E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) ) |
| 109 |
108
|
reximdva |
|- ( ( ph /\ -. L e. RR ) -> ( E. x e. RR+ A. w e. RR x < ( abs ` ( L - w ) ) -> E. x e. RR+ -. E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) ) |
| 110 |
11 109
|
mpd |
|- ( ( ph /\ -. L e. RR ) -> E. x e. RR+ -. E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
| 111 |
|
rexnal |
|- ( E. x e. RR+ -. E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) <-> -. A. x e. RR+ E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
| 112 |
110 111
|
sylib |
|- ( ( ph /\ -. L e. RR ) -> -. A. x e. RR+ E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
| 113 |
112
|
intnand |
|- ( ( ph /\ -. L e. RR ) -> -. ( L e. CC /\ A. x e. RR+ E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) ) |
| 114 |
1 86
|
fssd |
|- ( ph -> F : A --> CC ) |
| 115 |
114 2 47
|
ellimc3 |
|- ( ph -> ( L e. ( F limCC B ) <-> ( L e. CC /\ A. x e. RR+ E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) ) ) |
| 116 |
115
|
adantr |
|- ( ( ph /\ -. L e. RR ) -> ( L e. ( F limCC B ) <-> ( L e. CC /\ A. x e. RR+ E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) ) ) |
| 117 |
113 116
|
mtbird |
|- ( ( ph /\ -. L e. RR ) -> -. L e. ( F limCC B ) ) |
| 118 |
5 117
|
condan |
|- ( ph -> L e. RR ) |