Metamath Proof Explorer


Theorem limcrecl

Description: If F is a real-valued function, B is a limit point of its domain, and the limit of F at B exists, then this limit is real. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses limcrecl.1 φF:A
limcrecl.2 φA
limcrecl.3 φBlimPtTopOpenfldA
limcrecl.4 φLFlimB
Assertion limcrecl φL

Proof

Step Hyp Ref Expression
1 limcrecl.1 φF:A
2 limcrecl.2 φA
3 limcrecl.3 φBlimPtTopOpenfldA
4 limcrecl.4 φLFlimB
5 4 adantr φ¬LLFlimB
6 limccl FlimB
7 6 4 sselid φL
8 7 adantr φ¬LL
9 simpr φ¬L¬L
10 8 9 eldifd φ¬LL
11 10 dstregt0 φ¬Lx+wx<Lw
12 cnxmet abs∞Met
13 12 a1i φ¬Lx+wx<Lwy+abs∞Met
14 2 ad4antr φ¬Lx+wx<Lwy+A
15 14 ssdifssd φ¬Lx+wx<Lwy+AB
16 eqid TopOpenfld=TopOpenfld
17 16 cnfldtop TopOpenfldTop
18 17 a1i φTopOpenfldTop
19 unicntop =TopOpenfld
20 2 19 sseqtrdi φATopOpenfld
21 eqid TopOpenfld=TopOpenfld
22 21 lpdifsn TopOpenfldTopATopOpenfldBlimPtTopOpenfldABlimPtTopOpenfldAB
23 18 20 22 syl2anc φBlimPtTopOpenfldABlimPtTopOpenfldAB
24 3 23 mpbid φBlimPtTopOpenfldAB
25 24 ad4antr φ¬Lx+wx<Lwy+BlimPtTopOpenfldAB
26 simpr φ¬Lx+wx<Lwy+y+
27 16 cnfldtopn TopOpenfld=MetOpenabs
28 27 lpbl abs∞MetABBlimPtTopOpenfldABy+zABzBballabsy
29 13 15 25 26 28 syl31anc φ¬Lx+wx<Lwy+zABzBballabsy
30 eldif zABzA¬zB
31 30 anbi1i zABzBballabsyzA¬zBzBballabsy
32 anass zA¬zBzBballabsyzA¬zBzBballabsy
33 31 32 bitri zABzBballabsyzA¬zBzBballabsy
34 33 rexbii2 zABzBballabsyzA¬zBzBballabsy
35 29 34 sylib φ¬Lx+wx<Lwy+zA¬zBzBballabsy
36 simprl φ¬Lx+wx<Lwy+¬zBzBballabsy¬zB
37 velsn zBz=B
38 37 necon3bbii ¬zBzB
39 36 38 sylib φ¬Lx+wx<Lwy+¬zBzBballabsyzB
40 simp-5l φ¬Lx+wx<Lwy+¬zBzBballabsyφ
41 simplr φ¬Lx+wx<Lwy+¬zBzBballabsyy+
42 simprr φ¬Lx+wx<Lwy+¬zBzBballabsyzBballabsy
43 simp3 φy+zBballabsyzBballabsy
44 12 a1i φy+zBballabsyabs∞Met
45 19 lpss TopOpenfldTopAlimPtTopOpenfldA
46 18 2 45 syl2anc φlimPtTopOpenfldA
47 46 3 sseldd φB
48 47 3ad2ant1 φy+zBballabsyB
49 rpxr y+y*
50 49 3ad2ant2 φy+zBballabsyy*
51 elbl abs∞MetBy*zBballabsyzBabsz<y
52 44 48 50 51 syl3anc φy+zBballabsyzBballabsyzBabsz<y
53 43 52 mpbid φy+zBballabsyzBabsz<y
54 53 simpld φy+zBballabsyz
55 54 48 abssubd φy+zBballabsyzB=Bz
56 eqid abs=abs
57 56 cnmetdval BzBabsz=Bz
58 48 54 57 syl2anc φy+zBballabsyBabsz=Bz
59 53 simprd φy+zBballabsyBabsz<y
60 58 59 eqbrtrrd φy+zBballabsyBz<y
61 55 60 eqbrtrd φy+zBballabsyzB<y
62 40 41 42 61 syl3anc φ¬Lx+wx<Lwy+¬zBzBballabsyzB<y
63 39 62 jca φ¬Lx+wx<Lwy+¬zBzBballabsyzBzB<y
64 63 adantlr φ¬Lx+wx<Lwy+zA¬zBzBballabsyzBzB<y
65 40 adantlr φ¬Lx+wx<Lwy+zA¬zBzBballabsyφ
66 simplr φ¬Lx+wx<Lwy+zA¬zBzBballabsyzA
67 65 66 jca φ¬Lx+wx<Lwy+zA¬zBzBballabsyφzA
68 simp-5r φ¬Lx+wx<Lwy+zA¬zBzBballabsyx+
69 simp-4r φ¬Lx+wx<Lwy+zA¬zBzBballabsywx<Lw
70 rpre x+x
71 70 ad2antlr φzAx+wx<Lwx
72 1 ffvelcdmda φzAFz
73 72 recnd φzAFz
74 73 ad2antrr φzAx+wx<LwFz
75 7 ad3antrrr φzAx+wx<LwL
76 74 75 subcld φzAx+wx<LwFzL
77 76 abscld φzAx+wx<LwFzL
78 72 adantr φzAwx<LwFz
79 nfv wφ
80 nfra1 wwx<Lw
81 79 80 nfan wφwx<Lw
82 rspa wx<Lwwx<Lw
83 82 adantll φwx<Lwwx<Lw
84 7 adantr φwL
85 ax-resscn
86 85 a1i φ
87 86 sselda φww
88 84 87 abssubd φwLw=wL
89 88 adantlr φwx<LwwLw=wL
90 83 89 breqtrd φwx<Lwwx<wL
91 90 ex φwx<Lwwx<wL
92 81 91 ralrimi φwx<Lwwx<wL
93 92 adantlr φzAwx<Lwwx<wL
94 fvoveq1 w=FzwL=FzL
95 94 breq2d w=Fzx<wLx<FzL
96 95 rspcv Fzwx<wLx<FzL
97 78 93 96 sylc φzAwx<Lwx<FzL
98 97 adantlr φzAx+wx<Lwx<FzL
99 71 77 98 ltnsymd φzAx+wx<Lw¬FzL<x
100 67 68 69 99 syl21anc φ¬Lx+wx<Lwy+zA¬zBzBballabsy¬FzL<x
101 64 100 jcnd φ¬Lx+wx<Lwy+zA¬zBzBballabsy¬zBzB<yFzL<x
102 101 ex φ¬Lx+wx<Lwy+zA¬zBzBballabsy¬zBzB<yFzL<x
103 102 reximdva φ¬Lx+wx<Lwy+zA¬zBzBballabsyzA¬zBzB<yFzL<x
104 35 103 mpd φ¬Lx+wx<Lwy+zA¬zBzB<yFzL<x
105 rexnal zA¬zBzB<yFzL<x¬zAzBzB<yFzL<x
106 104 105 sylib φ¬Lx+wx<Lwy+¬zAzBzB<yFzL<x
107 106 nrexdv φ¬Lx+wx<Lw¬y+zAzBzB<yFzL<x
108 107 ex φ¬Lx+wx<Lw¬y+zAzBzB<yFzL<x
109 108 reximdva φ¬Lx+wx<Lwx+¬y+zAzBzB<yFzL<x
110 11 109 mpd φ¬Lx+¬y+zAzBzB<yFzL<x
111 rexnal x+¬y+zAzBzB<yFzL<x¬x+y+zAzBzB<yFzL<x
112 110 111 sylib φ¬L¬x+y+zAzBzB<yFzL<x
113 112 intnand φ¬L¬Lx+y+zAzBzB<yFzL<x
114 1 86 fssd φF:A
115 114 2 47 ellimc3 φLFlimBLx+y+zAzBzB<yFzL<x
116 115 adantr φ¬LLFlimBLx+y+zAzBzB<yFzL<x
117 113 116 mtbird φ¬L¬LFlimB
118 5 117 condan φL