| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dstregt0.1 |
|
| 2 |
1
|
eldifad |
|
| 3 |
2
|
imcld |
|
| 4 |
3
|
recnd |
|
| 5 |
1
|
eldifbd |
|
| 6 |
|
reim0b |
|
| 7 |
2 6
|
syl |
|
| 8 |
5 7
|
mtbid |
|
| 9 |
8
|
neqned |
|
| 10 |
4 9
|
absrpcld |
|
| 11 |
10
|
rphalfcld |
|
| 12 |
2
|
adantr |
|
| 13 |
|
recn |
|
| 14 |
13
|
adantl |
|
| 15 |
12 14
|
imsubd |
|
| 16 |
|
simpr |
|
| 17 |
16
|
reim0d |
|
| 18 |
17
|
oveq2d |
|
| 19 |
4
|
adantr |
|
| 20 |
19
|
subid1d |
|
| 21 |
15 18 20
|
3eqtrrd |
|
| 22 |
21
|
fveq2d |
|
| 23 |
22
|
oveq1d |
|
| 24 |
21 19
|
eqeltrrd |
|
| 25 |
24
|
abscld |
|
| 26 |
25
|
rehalfcld |
|
| 27 |
12 14
|
subcld |
|
| 28 |
27
|
abscld |
|
| 29 |
9
|
adantr |
|
| 30 |
21 29
|
eqnetrrd |
|
| 31 |
24 30
|
absrpcld |
|
| 32 |
|
rphalflt |
|
| 33 |
31 32
|
syl |
|
| 34 |
|
absimle |
|
| 35 |
27 34
|
syl |
|
| 36 |
26 25 28 33 35
|
ltletrd |
|
| 37 |
23 36
|
eqbrtrd |
|
| 38 |
37
|
ralrimiva |
|
| 39 |
|
breq1 |
|
| 40 |
39
|
ralbidv |
|
| 41 |
40
|
rspcev |
|
| 42 |
11 38 41
|
syl2anc |
|