| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvbdfbdioo.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
dvbdfbdioo.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
dvbdfbdioo.altb |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
| 4 |
|
dvbdfbdioo.f |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 5 |
|
dvbdfbdioo.dmdv |
⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
| 6 |
|
dvbdfbdioo.dvbd |
⊢ ( 𝜑 → ∃ 𝑎 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) |
| 7 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 8 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 9 |
1 2
|
readdcld |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
| 10 |
9
|
rehalfcld |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℝ ) |
| 11 |
|
avglt1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ 𝐴 < ( ( 𝐴 + 𝐵 ) / 2 ) ) ) |
| 12 |
1 2 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 𝐴 < ( ( 𝐴 + 𝐵 ) / 2 ) ) ) |
| 13 |
3 12
|
mpbid |
⊢ ( 𝜑 → 𝐴 < ( ( 𝐴 + 𝐵 ) / 2 ) ) |
| 14 |
|
avglt2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ) ) |
| 15 |
1 2 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ) ) |
| 16 |
3 15
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ) |
| 17 |
7 8 10 13 16
|
eliood |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ( 𝐴 (,) 𝐵 ) ) |
| 18 |
4 17
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ∈ ℝ ) |
| 19 |
18
|
recnd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ∈ ℂ ) |
| 20 |
19
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) ∈ ℝ ) |
| 21 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) ∈ ℝ ) |
| 22 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → 𝑎 ∈ ℝ ) |
| 23 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → 𝐵 ∈ ℝ ) |
| 24 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → 𝐴 ∈ ℝ ) |
| 25 |
23 24
|
resubcld |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 26 |
22 25
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → ( 𝑎 · ( 𝐵 − 𝐴 ) ) ∈ ℝ ) |
| 27 |
21 26
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → ( ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) + ( 𝑎 · ( 𝐵 − 𝐴 ) ) ) ∈ ℝ ) |
| 28 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → 𝐴 < 𝐵 ) |
| 29 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 30 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
| 31 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑦 → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) = ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ) |
| 32 |
31
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ↔ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ≤ 𝑎 ) ) |
| 33 |
32
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ↔ ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ≤ 𝑎 ) |
| 34 |
33
|
biimpi |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 → ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ≤ 𝑎 ) |
| 35 |
34
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ≤ 𝑎 ) |
| 36 |
|
eqid |
⊢ ( ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) + ( 𝑎 · ( 𝐵 − 𝐴 ) ) ) = ( ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) + ( 𝑎 · ( 𝐵 − 𝐴 ) ) ) |
| 37 |
24 23 28 29 30 22 35 36
|
dvbdfbdioolem2 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) + ( 𝑎 · ( 𝐵 − 𝐴 ) ) ) ) |
| 38 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑦 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 39 |
38
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ↔ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑏 ) ) |
| 40 |
39
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ↔ ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑏 ) |
| 41 |
|
breq2 |
⊢ ( 𝑏 = ( ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) + ( 𝑎 · ( 𝐵 − 𝐴 ) ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑏 ↔ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) + ( 𝑎 · ( 𝐵 − 𝐴 ) ) ) ) ) |
| 42 |
41
|
ralbidv |
⊢ ( 𝑏 = ( ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) + ( 𝑎 · ( 𝐵 − 𝐴 ) ) ) → ( ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑏 ↔ ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) + ( 𝑎 · ( 𝐵 − 𝐴 ) ) ) ) ) |
| 43 |
40 42
|
bitrid |
⊢ ( 𝑏 = ( ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) + ( 𝑎 · ( 𝐵 − 𝐴 ) ) ) → ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ↔ ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) + ( 𝑎 · ( 𝐵 − 𝐴 ) ) ) ) ) |
| 44 |
43
|
rspcev |
⊢ ( ( ( ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) + ( 𝑎 · ( 𝐵 − 𝐴 ) ) ) ∈ ℝ ∧ ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( ( abs ‘ ( 𝐹 ‘ ( ( 𝐴 + 𝐵 ) / 2 ) ) ) + ( 𝑎 · ( 𝐵 − 𝐴 ) ) ) ) → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) |
| 45 |
27 37 44
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝑎 ) → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) |
| 46 |
45 6
|
r19.29a |
⊢ ( 𝜑 → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) |