| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvbdfbdioolem1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
dvbdfbdioolem1.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
dvbdfbdioolem1.f |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 4 |
|
dvbdfbdioolem1.dmdv |
⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
| 5 |
|
dvbdfbdioolem1.k |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 6 |
|
dvbdfbdioolem1.dvbd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝐾 ) |
| 7 |
|
dvbdfbdioolem1.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 8 |
|
dvbdfbdioolem1.d |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐶 (,) 𝐵 ) ) |
| 9 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
| 10 |
9 7
|
sselid |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 11 |
|
ioossre |
⊢ ( 𝐶 (,) 𝐵 ) ⊆ ℝ |
| 12 |
11 8
|
sselid |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 13 |
10
|
rexrd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 14 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 15 |
|
ioogtlb |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐷 ∈ ( 𝐶 (,) 𝐵 ) ) → 𝐶 < 𝐷 ) |
| 16 |
13 14 8 15
|
syl3anc |
⊢ ( 𝜑 → 𝐶 < 𝐷 ) |
| 17 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 18 |
|
ioogtlb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 < 𝐶 ) |
| 19 |
17 14 7 18
|
syl3anc |
⊢ ( 𝜑 → 𝐴 < 𝐶 ) |
| 20 |
|
iooltub |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐷 ∈ ( 𝐶 (,) 𝐵 ) ) → 𝐷 < 𝐵 ) |
| 21 |
13 14 8 20
|
syl3anc |
⊢ ( 𝜑 → 𝐷 < 𝐵 ) |
| 22 |
|
iccssioo |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐶 ∧ 𝐷 < 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 23 |
17 14 19 21 22
|
syl22anc |
⊢ ( 𝜑 → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 24 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 25 |
24
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 26 |
3 25
|
fssd |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 27 |
9
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 28 |
|
dvcn |
⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) ∧ dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 29 |
25 26 27 4 28
|
syl31anc |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 30 |
|
cncfcdm |
⊢ ( ( ℝ ⊆ ℂ ∧ 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) → ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ↔ 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
| 31 |
25 29 30
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ↔ 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
| 32 |
3 31
|
mpbird |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) |
| 33 |
|
rescncf |
⊢ ( ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) → ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) → ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ∈ ( ( 𝐶 [,] 𝐷 ) –cn→ ℝ ) ) ) |
| 34 |
23 32 33
|
sylc |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ∈ ( ( 𝐶 [,] 𝐷 ) –cn→ ℝ ) ) |
| 35 |
23 27
|
sstrd |
⊢ ( 𝜑 → ( 𝐶 [,] 𝐷 ) ⊆ ℝ ) |
| 36 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 37 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 38 |
36 37
|
dvres |
⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ∧ ( ( 𝐴 (,) 𝐵 ) ⊆ ℝ ∧ ( 𝐶 [,] 𝐷 ) ⊆ ℝ ) ) → ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐶 [,] 𝐷 ) ) ) ) |
| 39 |
25 26 27 35 38
|
syl22anc |
⊢ ( 𝜑 → ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐶 [,] 𝐷 ) ) ) ) |
| 40 |
|
iccntr |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐶 [,] 𝐷 ) ) = ( 𝐶 (,) 𝐷 ) ) |
| 41 |
10 12 40
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐶 [,] 𝐷 ) ) = ( 𝐶 (,) 𝐷 ) ) |
| 42 |
41
|
reseq2d |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐶 [,] 𝐷 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝐶 (,) 𝐷 ) ) ) |
| 43 |
39 42
|
eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝐶 (,) 𝐷 ) ) ) |
| 44 |
43
|
dmeqd |
⊢ ( 𝜑 → dom ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) = dom ( ( ℝ D 𝐹 ) ↾ ( 𝐶 (,) 𝐷 ) ) ) |
| 45 |
1 10 19
|
ltled |
⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) |
| 46 |
12 2 21
|
ltled |
⊢ ( 𝜑 → 𝐷 ≤ 𝐵 ) |
| 47 |
|
ioossioo |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵 ) ) → ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 48 |
17 14 45 46 47
|
syl22anc |
⊢ ( 𝜑 → ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 49 |
48 4
|
sseqtrrd |
⊢ ( 𝜑 → ( 𝐶 (,) 𝐷 ) ⊆ dom ( ℝ D 𝐹 ) ) |
| 50 |
|
ssdmres |
⊢ ( ( 𝐶 (,) 𝐷 ) ⊆ dom ( ℝ D 𝐹 ) ↔ dom ( ( ℝ D 𝐹 ) ↾ ( 𝐶 (,) 𝐷 ) ) = ( 𝐶 (,) 𝐷 ) ) |
| 51 |
49 50
|
sylib |
⊢ ( 𝜑 → dom ( ( ℝ D 𝐹 ) ↾ ( 𝐶 (,) 𝐷 ) ) = ( 𝐶 (,) 𝐷 ) ) |
| 52 |
44 51
|
eqtrd |
⊢ ( 𝜑 → dom ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) = ( 𝐶 (,) 𝐷 ) ) |
| 53 |
10 12 16 34 52
|
mvth |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) |
| 54 |
43
|
fveq1d |
⊢ ( 𝜑 → ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) = ( ( ( ℝ D 𝐹 ) ↾ ( 𝐶 (,) 𝐷 ) ) ‘ 𝑥 ) ) |
| 55 |
|
fvres |
⊢ ( 𝑥 ∈ ( 𝐶 (,) 𝐷 ) → ( ( ( ℝ D 𝐹 ) ↾ ( 𝐶 (,) 𝐷 ) ) ‘ 𝑥 ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 56 |
54 55
|
sylan9eq |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 57 |
56
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) ) |
| 58 |
57
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) ) |
| 59 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) |
| 60 |
12
|
rexrd |
⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) |
| 61 |
10 12 16
|
ltled |
⊢ ( 𝜑 → 𝐶 ≤ 𝐷 ) |
| 62 |
|
ubicc2 |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 ≤ 𝐷 ) → 𝐷 ∈ ( 𝐶 [,] 𝐷 ) ) |
| 63 |
13 60 61 62
|
syl3anc |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐶 [,] 𝐷 ) ) |
| 64 |
|
fvres |
⊢ ( 𝐷 ∈ ( 𝐶 [,] 𝐷 ) → ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) = ( 𝐹 ‘ 𝐷 ) ) |
| 65 |
63 64
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) = ( 𝐹 ‘ 𝐷 ) ) |
| 66 |
|
lbicc2 |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 ≤ 𝐷 ) → 𝐶 ∈ ( 𝐶 [,] 𝐷 ) ) |
| 67 |
13 60 61 66
|
syl3anc |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐶 [,] 𝐷 ) ) |
| 68 |
|
fvres |
⊢ ( 𝐶 ∈ ( 𝐶 [,] 𝐷 ) → ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) = ( 𝐹 ‘ 𝐶 ) ) |
| 69 |
67 68
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) = ( 𝐹 ‘ 𝐶 ) ) |
| 70 |
65 69
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) = ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) |
| 71 |
70
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) |
| 72 |
71
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) |
| 73 |
58 59 72
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) |
| 74 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) |
| 75 |
74
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 76 |
23 63
|
sseldd |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 77 |
3 76
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐷 ) ∈ ℝ ) |
| 78 |
3 7
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ℝ ) |
| 79 |
77 78
|
resubcld |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ∈ ℝ ) |
| 80 |
79
|
recnd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ∈ ℂ ) |
| 81 |
80
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ∈ ℂ ) |
| 82 |
|
dvfre |
⊢ ( ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
| 83 |
3 27 82
|
syl2anc |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
| 84 |
4
|
feq2d |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ↔ ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
| 85 |
83 84
|
mpbid |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 86 |
85
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 87 |
48
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 88 |
86 87
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
| 89 |
88
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 90 |
89
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 91 |
12 10
|
resubcld |
⊢ ( 𝜑 → ( 𝐷 − 𝐶 ) ∈ ℝ ) |
| 92 |
91
|
recnd |
⊢ ( 𝜑 → ( 𝐷 − 𝐶 ) ∈ ℂ ) |
| 93 |
92
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( 𝐷 − 𝐶 ) ∈ ℂ ) |
| 94 |
10 12
|
posdifd |
⊢ ( 𝜑 → ( 𝐶 < 𝐷 ↔ 0 < ( 𝐷 − 𝐶 ) ) ) |
| 95 |
16 94
|
mpbid |
⊢ ( 𝜑 → 0 < ( 𝐷 − 𝐶 ) ) |
| 96 |
95
|
gt0ne0d |
⊢ ( 𝜑 → ( 𝐷 − 𝐶 ) ≠ 0 ) |
| 97 |
96
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( 𝐷 − 𝐶 ) ≠ 0 ) |
| 98 |
81 90 93 97
|
divmul3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ↔ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) · ( 𝐷 − 𝐶 ) ) ) ) |
| 99 |
75 98
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) · ( 𝐷 − 𝐶 ) ) ) |
| 100 |
99
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( abs ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) · ( 𝐷 − 𝐶 ) ) ) ) |
| 101 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( 𝐷 − 𝐶 ) ∈ ℂ ) |
| 102 |
89 101
|
absmuld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( abs ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) · ( 𝐷 − 𝐶 ) ) ) = ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) · ( abs ‘ ( 𝐷 − 𝐶 ) ) ) ) |
| 103 |
102
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( abs ‘ ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) · ( 𝐷 − 𝐶 ) ) ) = ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) · ( abs ‘ ( 𝐷 − 𝐶 ) ) ) ) |
| 104 |
100 103
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) · ( abs ‘ ( 𝐷 − 𝐶 ) ) ) ) |
| 105 |
10 12 61
|
abssubge0d |
⊢ ( 𝜑 → ( abs ‘ ( 𝐷 − 𝐶 ) ) = ( 𝐷 − 𝐶 ) ) |
| 106 |
105
|
oveq2d |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) · ( abs ‘ ( 𝐷 − 𝐶 ) ) ) = ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) · ( 𝐷 − 𝐶 ) ) ) |
| 107 |
106
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) · ( abs ‘ ( 𝐷 − 𝐶 ) ) ) = ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) · ( 𝐷 − 𝐶 ) ) ) |
| 108 |
104 107
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) = ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) · ( 𝐷 − 𝐶 ) ) ) |
| 109 |
89
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 110 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → 𝐾 ∈ ℝ ) |
| 111 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( 𝐷 − 𝐶 ) ∈ ℝ ) |
| 112 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 113 |
112 91 95
|
ltled |
⊢ ( 𝜑 → 0 ≤ ( 𝐷 − 𝐶 ) ) |
| 114 |
113
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → 0 ≤ ( 𝐷 − 𝐶 ) ) |
| 115 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝐾 ) |
| 116 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝐾 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝐾 ) |
| 117 |
115 87 116
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ≤ 𝐾 ) |
| 118 |
109 110 111 114 117
|
lemul1ad |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) · ( 𝐷 − 𝐶 ) ) ≤ ( 𝐾 · ( 𝐷 − 𝐶 ) ) ) |
| 119 |
118
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) · ( 𝐷 − 𝐶 ) ) ≤ ( 𝐾 · ( 𝐷 − 𝐶 ) ) ) |
| 120 |
108 119
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐷 − 𝐶 ) ) ) |
| 121 |
73 120
|
syld3an3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐷 − 𝐶 ) ) ) |
| 122 |
101
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( abs ‘ ( 𝐷 − 𝐶 ) ) ∈ ℝ ) |
| 123 |
2 1
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 124 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 125 |
89
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → 0 ≤ ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
| 126 |
101
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → 0 ≤ ( abs ‘ ( 𝐷 − 𝐶 ) ) ) |
| 127 |
12 1 2 10 46 45
|
le2subd |
⊢ ( 𝜑 → ( 𝐷 − 𝐶 ) ≤ ( 𝐵 − 𝐴 ) ) |
| 128 |
105 127
|
eqbrtrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐷 − 𝐶 ) ) ≤ ( 𝐵 − 𝐴 ) ) |
| 129 |
128
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( abs ‘ ( 𝐷 − 𝐶 ) ) ≤ ( 𝐵 − 𝐴 ) ) |
| 130 |
109 110 122 124 125 126 117 129
|
lemul12ad |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ) → ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) · ( abs ‘ ( 𝐷 − 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐵 − 𝐴 ) ) ) |
| 131 |
130
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) · ( abs ‘ ( 𝐷 − 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐵 − 𝐴 ) ) ) |
| 132 |
104 131
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐵 − 𝐴 ) ) ) |
| 133 |
73 132
|
syld3an3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐵 − 𝐴 ) ) ) |
| 134 |
121 133
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ∧ ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐷 − 𝐶 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐵 − 𝐴 ) ) ) ) |
| 135 |
134
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝐶 (,) 𝐷 ) ( ( ℝ D ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ) ‘ 𝑥 ) = ( ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐷 ) − ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ‘ 𝐶 ) ) / ( 𝐷 − 𝐶 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐷 − 𝐶 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐵 − 𝐴 ) ) ) ) ) |
| 136 |
53 135
|
mpd |
⊢ ( 𝜑 → ( ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐷 − 𝐶 ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝐷 ) − ( 𝐹 ‘ 𝐶 ) ) ) ≤ ( 𝐾 · ( 𝐵 − 𝐴 ) ) ) ) |