| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ioodvbdlimc1lem1.a |
|- ( ph -> A e. RR ) |
| 2 |
|
ioodvbdlimc1lem1.b |
|- ( ph -> B e. RR ) |
| 3 |
|
ioodvbdlimc1lem1.altb |
|- ( ph -> A < B ) |
| 4 |
|
ioodvbdlimc1lem1.f |
|- ( ph -> F e. ( ( A (,) B ) -cn-> RR ) ) |
| 5 |
|
ioodvbdlimc1lem1.dmdv |
|- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
| 6 |
|
ioodvbdlimc1lem1.dvbd |
|- ( ph -> E. y e. RR A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ y ) |
| 7 |
|
ioodvbdlimc1lem1.m |
|- ( ph -> M e. ZZ ) |
| 8 |
|
ioodvbdlimc1lem1.r |
|- ( ph -> R : ( ZZ>= ` M ) --> ( A (,) B ) ) |
| 9 |
|
ioodvbdlimc1lem1.s |
|- S = ( j e. ( ZZ>= ` M ) |-> ( F ` ( R ` j ) ) ) |
| 10 |
|
ioodvbdlimc1lem1.rcnv |
|- ( ph -> R e. dom ~~> ) |
| 11 |
|
ioodvbdlimc1lem1.k |
|- K = inf ( { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } , RR , < ) |
| 12 |
|
eqid |
|- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
| 13 |
|
cncff |
|- ( F e. ( ( A (,) B ) -cn-> RR ) -> F : ( A (,) B ) --> RR ) |
| 14 |
4 13
|
syl |
|- ( ph -> F : ( A (,) B ) --> RR ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> F : ( A (,) B ) --> RR ) |
| 16 |
8
|
ffvelcdmda |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( R ` j ) e. ( A (,) B ) ) |
| 17 |
15 16
|
ffvelcdmd |
|- ( ( ph /\ j e. ( ZZ>= ` M ) ) -> ( F ` ( R ` j ) ) e. RR ) |
| 18 |
17 9
|
fmptd |
|- ( ph -> S : ( ZZ>= ` M ) --> RR ) |
| 19 |
|
ssrab2 |
|- { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } C_ ( ZZ>= ` M ) |
| 20 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
| 21 |
20
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> x e. RR ) |
| 22 |
|
2fveq3 |
|- ( z = x -> ( abs ` ( ( RR _D F ) ` z ) ) = ( abs ` ( ( RR _D F ) ` x ) ) ) |
| 23 |
22
|
cbvmptv |
|- ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) = ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) |
| 24 |
23
|
rneqi |
|- ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) = ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) |
| 25 |
24
|
supeq1i |
|- sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) = sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) |
| 26 |
|
ioomidp |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( A + B ) / 2 ) e. ( A (,) B ) ) |
| 27 |
1 2 3 26
|
syl3anc |
|- ( ph -> ( ( A + B ) / 2 ) e. ( A (,) B ) ) |
| 28 |
27
|
ne0d |
|- ( ph -> ( A (,) B ) =/= (/) ) |
| 29 |
|
ioossre |
|- ( A (,) B ) C_ RR |
| 30 |
29
|
a1i |
|- ( ph -> ( A (,) B ) C_ RR ) |
| 31 |
|
dvfre |
|- ( ( F : ( A (,) B ) --> RR /\ ( A (,) B ) C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
| 32 |
14 30 31
|
syl2anc |
|- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
| 33 |
5
|
feq2d |
|- ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> RR <-> ( RR _D F ) : ( A (,) B ) --> RR ) ) |
| 34 |
32 33
|
mpbid |
|- ( ph -> ( RR _D F ) : ( A (,) B ) --> RR ) |
| 35 |
|
ax-resscn |
|- RR C_ CC |
| 36 |
35
|
a1i |
|- ( ph -> RR C_ CC ) |
| 37 |
34 36
|
fssd |
|- ( ph -> ( RR _D F ) : ( A (,) B ) --> CC ) |
| 38 |
37
|
ffvelcdmda |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 39 |
38
|
abscld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( abs ` ( ( RR _D F ) ` x ) ) e. RR ) |
| 40 |
|
eqid |
|- ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) = ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) |
| 41 |
|
eqid |
|- sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) = sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) |
| 42 |
28 39 6 40 41
|
suprnmpt |
|- ( ph -> ( sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) e. RR /\ A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) ) ) |
| 43 |
42
|
simpld |
|- ( ph -> sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) e. RR ) |
| 44 |
25 43
|
eqeltrid |
|- ( ph -> sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) e. RR ) |
| 45 |
44
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) e. RR ) |
| 46 |
|
peano2re |
|- ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) e. RR -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) e. RR ) |
| 47 |
45 46
|
syl |
|- ( ( ph /\ x e. RR+ ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) e. RR ) |
| 48 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 49 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 50 |
48 49
|
readdcld |
|- ( ph -> ( 0 + 1 ) e. RR ) |
| 51 |
44 46
|
syl |
|- ( ph -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) e. RR ) |
| 52 |
48
|
ltp1d |
|- ( ph -> 0 < ( 0 + 1 ) ) |
| 53 |
37 27
|
ffvelcdmd |
|- ( ph -> ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) e. CC ) |
| 54 |
53
|
abscld |
|- ( ph -> ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) e. RR ) |
| 55 |
53
|
absge0d |
|- ( ph -> 0 <_ ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) ) |
| 56 |
42
|
simprd |
|- ( ph -> A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) ) |
| 57 |
|
2fveq3 |
|- ( y = x -> ( abs ` ( ( RR _D F ) ` y ) ) = ( abs ` ( ( RR _D F ) ` x ) ) ) |
| 58 |
25
|
a1i |
|- ( y = x -> sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) = sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) ) |
| 59 |
57 58
|
breq12d |
|- ( y = x -> ( ( abs ` ( ( RR _D F ) ` y ) ) <_ sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) <-> ( abs ` ( ( RR _D F ) ` x ) ) <_ sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) ) ) |
| 60 |
59
|
cbvralvw |
|- ( A. y e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` y ) ) <_ sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) <-> A. x e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` x ) ) <_ sup ( ran ( x e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` x ) ) ) , RR , < ) ) |
| 61 |
56 60
|
sylibr |
|- ( ph -> A. y e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` y ) ) <_ sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) ) |
| 62 |
|
2fveq3 |
|- ( y = ( ( A + B ) / 2 ) -> ( abs ` ( ( RR _D F ) ` y ) ) = ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) ) |
| 63 |
62
|
breq1d |
|- ( y = ( ( A + B ) / 2 ) -> ( ( abs ` ( ( RR _D F ) ` y ) ) <_ sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) <-> ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) <_ sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) ) ) |
| 64 |
63
|
rspcva |
|- ( ( ( ( A + B ) / 2 ) e. ( A (,) B ) /\ A. y e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` y ) ) <_ sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) ) -> ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) <_ sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) ) |
| 65 |
27 61 64
|
syl2anc |
|- ( ph -> ( abs ` ( ( RR _D F ) ` ( ( A + B ) / 2 ) ) ) <_ sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) ) |
| 66 |
48 54 44 55 65
|
letrd |
|- ( ph -> 0 <_ sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) ) |
| 67 |
48 44 49 66
|
leadd1dd |
|- ( ph -> ( 0 + 1 ) <_ ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) |
| 68 |
48 50 51 52 67
|
ltletrd |
|- ( ph -> 0 < ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) |
| 69 |
68
|
gt0ne0d |
|- ( ph -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) =/= 0 ) |
| 70 |
69
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) =/= 0 ) |
| 71 |
21 47 70
|
redivcld |
|- ( ( ph /\ x e. RR+ ) -> ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) e. RR ) |
| 72 |
|
rpgt0 |
|- ( x e. RR+ -> 0 < x ) |
| 73 |
72
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> 0 < x ) |
| 74 |
68
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> 0 < ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) |
| 75 |
21 47 73 74
|
divgt0d |
|- ( ( ph /\ x e. RR+ ) -> 0 < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) |
| 76 |
71 75
|
elrpd |
|- ( ( ph /\ x e. RR+ ) -> ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) e. RR+ ) |
| 77 |
7
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> M e. ZZ ) |
| 78 |
10
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> R e. dom ~~> ) |
| 79 |
12
|
climcau |
|- ( ( M e. ZZ /\ R e. dom ~~> ) -> A. w e. RR+ E. k e. ( ZZ>= ` M ) A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < w ) |
| 80 |
77 78 79
|
syl2anc |
|- ( ( ph /\ x e. RR+ ) -> A. w e. RR+ E. k e. ( ZZ>= ` M ) A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < w ) |
| 81 |
|
breq2 |
|- ( w = ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) -> ( ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < w <-> ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) ) |
| 82 |
81
|
rexralbidv |
|- ( w = ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) -> ( E. k e. ( ZZ>= ` M ) A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < w <-> E. k e. ( ZZ>= ` M ) A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) ) |
| 83 |
82
|
rspcva |
|- ( ( ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) e. RR+ /\ A. w e. RR+ E. k e. ( ZZ>= ` M ) A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < w ) -> E. k e. ( ZZ>= ` M ) A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) |
| 84 |
76 80 83
|
syl2anc |
|- ( ( ph /\ x e. RR+ ) -> E. k e. ( ZZ>= ` M ) A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) |
| 85 |
|
rabn0 |
|- ( { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } =/= (/) <-> E. k e. ( ZZ>= ` M ) A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) |
| 86 |
84 85
|
sylibr |
|- ( ( ph /\ x e. RR+ ) -> { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } =/= (/) ) |
| 87 |
|
infssuzcl |
|- ( ( { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } C_ ( ZZ>= ` M ) /\ { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } =/= (/) ) -> inf ( { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } , RR , < ) e. { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } ) |
| 88 |
19 86 87
|
sylancr |
|- ( ( ph /\ x e. RR+ ) -> inf ( { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } , RR , < ) e. { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } ) |
| 89 |
11 88
|
eqeltrid |
|- ( ( ph /\ x e. RR+ ) -> K e. { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } ) |
| 90 |
19 89
|
sselid |
|- ( ( ph /\ x e. RR+ ) -> K e. ( ZZ>= ` M ) ) |
| 91 |
|
2fveq3 |
|- ( j = i -> ( F ` ( R ` j ) ) = ( F ` ( R ` i ) ) ) |
| 92 |
|
uzss |
|- ( K e. ( ZZ>= ` M ) -> ( ZZ>= ` K ) C_ ( ZZ>= ` M ) ) |
| 93 |
90 92
|
syl |
|- ( ( ph /\ x e. RR+ ) -> ( ZZ>= ` K ) C_ ( ZZ>= ` M ) ) |
| 94 |
93
|
sselda |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> i e. ( ZZ>= ` M ) ) |
| 95 |
14
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> F : ( A (,) B ) --> RR ) |
| 96 |
8
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> R : ( ZZ>= ` M ) --> ( A (,) B ) ) |
| 97 |
96 94
|
ffvelcdmd |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( R ` i ) e. ( A (,) B ) ) |
| 98 |
95 97
|
ffvelcdmd |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( F ` ( R ` i ) ) e. RR ) |
| 99 |
9 91 94 98
|
fvmptd3 |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( S ` i ) = ( F ` ( R ` i ) ) ) |
| 100 |
|
2fveq3 |
|- ( j = K -> ( F ` ( R ` j ) ) = ( F ` ( R ` K ) ) ) |
| 101 |
90
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> K e. ( ZZ>= ` M ) ) |
| 102 |
96 101
|
ffvelcdmd |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( R ` K ) e. ( A (,) B ) ) |
| 103 |
95 102
|
ffvelcdmd |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( F ` ( R ` K ) ) e. RR ) |
| 104 |
9 100 101 103
|
fvmptd3 |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( S ` K ) = ( F ` ( R ` K ) ) ) |
| 105 |
99 104
|
oveq12d |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( ( S ` i ) - ( S ` K ) ) = ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) |
| 106 |
105
|
fveq2d |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( abs ` ( ( S ` i ) - ( S ` K ) ) ) = ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) ) |
| 107 |
98
|
recnd |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( F ` ( R ` i ) ) e. CC ) |
| 108 |
103
|
recnd |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( F ` ( R ` K ) ) e. CC ) |
| 109 |
107 108
|
subcld |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) e. CC ) |
| 110 |
109
|
abscld |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) e. RR ) |
| 111 |
110
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) e. RR ) |
| 112 |
44
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) e. RR ) |
| 113 |
112
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) e. RR ) |
| 114 |
8
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> R : ( ZZ>= ` M ) --> ( A (,) B ) ) |
| 115 |
114 90
|
ffvelcdmd |
|- ( ( ph /\ x e. RR+ ) -> ( R ` K ) e. ( A (,) B ) ) |
| 116 |
29 115
|
sselid |
|- ( ( ph /\ x e. RR+ ) -> ( R ` K ) e. RR ) |
| 117 |
116
|
ad2antrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( R ` K ) e. RR ) |
| 118 |
29 97
|
sselid |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( R ` i ) e. RR ) |
| 119 |
118
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( R ` i ) e. RR ) |
| 120 |
117 119
|
resubcld |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( ( R ` K ) - ( R ` i ) ) e. RR ) |
| 121 |
113 120
|
remulcld |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( ( R ` K ) - ( R ` i ) ) ) e. RR ) |
| 122 |
20
|
ad3antlr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> x e. RR ) |
| 123 |
107
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( F ` ( R ` i ) ) e. CC ) |
| 124 |
108
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( F ` ( R ` K ) ) e. CC ) |
| 125 |
123 124
|
abssubd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) = ( abs ` ( ( F ` ( R ` K ) ) - ( F ` ( R ` i ) ) ) ) ) |
| 126 |
1
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> A e. RR ) |
| 127 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> B e. RR ) |
| 128 |
95
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> F : ( A (,) B ) --> RR ) |
| 129 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> dom ( RR _D F ) = ( A (,) B ) ) |
| 130 |
61
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> A. y e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` y ) ) <_ sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) ) |
| 131 |
97
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( R ` i ) e. ( A (,) B ) ) |
| 132 |
118
|
rexrd |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( R ` i ) e. RR* ) |
| 133 |
132
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( R ` i ) e. RR* ) |
| 134 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 135 |
134
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> B e. RR* ) |
| 136 |
135
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> B e. RR* ) |
| 137 |
|
simpr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( R ` i ) < ( R ` K ) ) |
| 138 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 139 |
138
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> A e. RR* ) |
| 140 |
134
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> B e. RR* ) |
| 141 |
|
iooltub |
|- ( ( A e. RR* /\ B e. RR* /\ ( R ` K ) e. ( A (,) B ) ) -> ( R ` K ) < B ) |
| 142 |
139 140 115 141
|
syl3anc |
|- ( ( ph /\ x e. RR+ ) -> ( R ` K ) < B ) |
| 143 |
142
|
ad2antrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( R ` K ) < B ) |
| 144 |
133 136 117 137 143
|
eliood |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( R ` K ) e. ( ( R ` i ) (,) B ) ) |
| 145 |
126 127 128 129 113 130 131 144
|
dvbdfbdioolem1 |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( ( abs ` ( ( F ` ( R ` K ) ) - ( F ` ( R ` i ) ) ) ) <_ ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( ( R ` K ) - ( R ` i ) ) ) /\ ( abs ` ( ( F ` ( R ` K ) ) - ( F ` ( R ` i ) ) ) ) <_ ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( B - A ) ) ) ) |
| 146 |
145
|
simpld |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( abs ` ( ( F ` ( R ` K ) ) - ( F ` ( R ` i ) ) ) ) <_ ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( ( R ` K ) - ( R ` i ) ) ) ) |
| 147 |
125 146
|
eqbrtrd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) <_ ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( ( R ` K ) - ( R ` i ) ) ) ) |
| 148 |
113 46
|
syl |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) e. RR ) |
| 149 |
148 120
|
remulcld |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) x. ( ( R ` K ) - ( R ` i ) ) ) e. RR ) |
| 150 |
119 117
|
posdifd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( ( R ` i ) < ( R ` K ) <-> 0 < ( ( R ` K ) - ( R ` i ) ) ) ) |
| 151 |
137 150
|
mpbid |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> 0 < ( ( R ` K ) - ( R ` i ) ) ) |
| 152 |
120 151
|
elrpd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( ( R ` K ) - ( R ` i ) ) e. RR+ ) |
| 153 |
113
|
ltp1d |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) < ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) |
| 154 |
113 148 152 153
|
ltmul1dd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( ( R ` K ) - ( R ` i ) ) ) < ( ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) x. ( ( R ` K ) - ( R ` i ) ) ) ) |
| 155 |
29 102
|
sselid |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( R ` K ) e. RR ) |
| 156 |
118 155
|
resubcld |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( ( R ` i ) - ( R ` K ) ) e. RR ) |
| 157 |
156
|
recnd |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( ( R ` i ) - ( R ` K ) ) e. CC ) |
| 158 |
157
|
abscld |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( abs ` ( ( R ` i ) - ( R ` K ) ) ) e. RR ) |
| 159 |
158
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( abs ` ( ( R ` i ) - ( R ` K ) ) ) e. RR ) |
| 160 |
71
|
ad2antrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) e. RR ) |
| 161 |
120
|
leabsd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( ( R ` K ) - ( R ` i ) ) <_ ( abs ` ( ( R ` K ) - ( R ` i ) ) ) ) |
| 162 |
117
|
recnd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( R ` K ) e. CC ) |
| 163 |
118
|
recnd |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( R ` i ) e. CC ) |
| 164 |
163
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( R ` i ) e. CC ) |
| 165 |
162 164
|
abssubd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( abs ` ( ( R ` K ) - ( R ` i ) ) ) = ( abs ` ( ( R ` i ) - ( R ` K ) ) ) ) |
| 166 |
161 165
|
breqtrd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( ( R ` K ) - ( R ` i ) ) <_ ( abs ` ( ( R ` i ) - ( R ` K ) ) ) ) |
| 167 |
|
fveq2 |
|- ( k = K -> ( ZZ>= ` k ) = ( ZZ>= ` K ) ) |
| 168 |
|
fveq2 |
|- ( k = K -> ( R ` k ) = ( R ` K ) ) |
| 169 |
168
|
oveq2d |
|- ( k = K -> ( ( R ` i ) - ( R ` k ) ) = ( ( R ` i ) - ( R ` K ) ) ) |
| 170 |
169
|
fveq2d |
|- ( k = K -> ( abs ` ( ( R ` i ) - ( R ` k ) ) ) = ( abs ` ( ( R ` i ) - ( R ` K ) ) ) ) |
| 171 |
170
|
breq1d |
|- ( k = K -> ( ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) <-> ( abs ` ( ( R ` i ) - ( R ` K ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) ) |
| 172 |
167 171
|
raleqbidv |
|- ( k = K -> ( A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) <-> A. i e. ( ZZ>= ` K ) ( abs ` ( ( R ` i ) - ( R ` K ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) ) |
| 173 |
172
|
elrab |
|- ( K e. { k e. ( ZZ>= ` M ) | A. i e. ( ZZ>= ` k ) ( abs ` ( ( R ` i ) - ( R ` k ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) } <-> ( K e. ( ZZ>= ` M ) /\ A. i e. ( ZZ>= ` K ) ( abs ` ( ( R ` i ) - ( R ` K ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) ) |
| 174 |
89 173
|
sylib |
|- ( ( ph /\ x e. RR+ ) -> ( K e. ( ZZ>= ` M ) /\ A. i e. ( ZZ>= ` K ) ( abs ` ( ( R ` i ) - ( R ` K ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) ) |
| 175 |
174
|
simprd |
|- ( ( ph /\ x e. RR+ ) -> A. i e. ( ZZ>= ` K ) ( abs ` ( ( R ` i ) - ( R ` K ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) |
| 176 |
175
|
r19.21bi |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( abs ` ( ( R ` i ) - ( R ` K ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) |
| 177 |
176
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( abs ` ( ( R ` i ) - ( R ` K ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) |
| 178 |
120 159 160 166 177
|
lelttrd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( ( R ` K ) - ( R ` i ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) |
| 179 |
51 68
|
elrpd |
|- ( ph -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) e. RR+ ) |
| 180 |
179
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) e. RR+ ) |
| 181 |
120 122 180
|
ltmuldiv2d |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( ( ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) x. ( ( R ` K ) - ( R ` i ) ) ) < x <-> ( ( R ` K ) - ( R ` i ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) ) |
| 182 |
178 181
|
mpbird |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) x. ( ( R ` K ) - ( R ` i ) ) ) < x ) |
| 183 |
121 149 122 154 182
|
lttrd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( ( R ` K ) - ( R ` i ) ) ) < x ) |
| 184 |
111 121 122 147 183
|
lelttrd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) < ( R ` K ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) < x ) |
| 185 |
|
fveq2 |
|- ( ( R ` i ) = ( R ` K ) -> ( F ` ( R ` i ) ) = ( F ` ( R ` K ) ) ) |
| 186 |
185
|
oveq1d |
|- ( ( R ` i ) = ( R ` K ) -> ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) = ( ( F ` ( R ` K ) ) - ( F ` ( R ` K ) ) ) ) |
| 187 |
108
|
subidd |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( ( F ` ( R ` K ) ) - ( F ` ( R ` K ) ) ) = 0 ) |
| 188 |
186 187
|
sylan9eqr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) = ( R ` K ) ) -> ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) = 0 ) |
| 189 |
188
|
abs00bd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) = ( R ` K ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) = 0 ) |
| 190 |
72
|
ad3antlr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) = ( R ` K ) ) -> 0 < x ) |
| 191 |
189 190
|
eqbrtrd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` i ) = ( R ` K ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) < x ) |
| 192 |
191
|
adantlr |
|- ( ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ -. ( R ` i ) < ( R ` K ) ) /\ ( R ` i ) = ( R ` K ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) < x ) |
| 193 |
|
simpll |
|- ( ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ -. ( R ` i ) < ( R ` K ) ) /\ -. ( R ` i ) = ( R ` K ) ) -> ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) ) |
| 194 |
155
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ -. ( R ` i ) < ( R ` K ) ) /\ -. ( R ` i ) = ( R ` K ) ) -> ( R ` K ) e. RR ) |
| 195 |
118
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ -. ( R ` i ) < ( R ` K ) ) /\ -. ( R ` i ) = ( R ` K ) ) -> ( R ` i ) e. RR ) |
| 196 |
|
id |
|- ( ( R ` K ) = ( R ` i ) -> ( R ` K ) = ( R ` i ) ) |
| 197 |
196
|
eqcomd |
|- ( ( R ` K ) = ( R ` i ) -> ( R ` i ) = ( R ` K ) ) |
| 198 |
197
|
necon3bi |
|- ( -. ( R ` i ) = ( R ` K ) -> ( R ` K ) =/= ( R ` i ) ) |
| 199 |
198
|
adantl |
|- ( ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ -. ( R ` i ) < ( R ` K ) ) /\ -. ( R ` i ) = ( R ` K ) ) -> ( R ` K ) =/= ( R ` i ) ) |
| 200 |
|
simplr |
|- ( ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ -. ( R ` i ) < ( R ` K ) ) /\ -. ( R ` i ) = ( R ` K ) ) -> -. ( R ` i ) < ( R ` K ) ) |
| 201 |
194 195 199 200
|
lttri5d |
|- ( ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ -. ( R ` i ) < ( R ` K ) ) /\ -. ( R ` i ) = ( R ` K ) ) -> ( R ` K ) < ( R ` i ) ) |
| 202 |
110
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) e. RR ) |
| 203 |
112 156
|
remulcld |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( ( R ` i ) - ( R ` K ) ) ) e. RR ) |
| 204 |
203
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( ( R ` i ) - ( R ` K ) ) ) e. RR ) |
| 205 |
20
|
ad3antlr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> x e. RR ) |
| 206 |
1
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> A e. RR ) |
| 207 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> B e. RR ) |
| 208 |
95
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> F : ( A (,) B ) --> RR ) |
| 209 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> dom ( RR _D F ) = ( A (,) B ) ) |
| 210 |
44
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) e. RR ) |
| 211 |
61
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> A. y e. ( A (,) B ) ( abs ` ( ( RR _D F ) ` y ) ) <_ sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) ) |
| 212 |
102
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( R ` K ) e. ( A (,) B ) ) |
| 213 |
116
|
rexrd |
|- ( ( ph /\ x e. RR+ ) -> ( R ` K ) e. RR* ) |
| 214 |
213
|
ad2antrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( R ` K ) e. RR* ) |
| 215 |
207
|
rexrd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> B e. RR* ) |
| 216 |
118
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( R ` i ) e. RR ) |
| 217 |
|
simpr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( R ` K ) < ( R ` i ) ) |
| 218 |
138
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> A e. RR* ) |
| 219 |
|
iooltub |
|- ( ( A e. RR* /\ B e. RR* /\ ( R ` i ) e. ( A (,) B ) ) -> ( R ` i ) < B ) |
| 220 |
218 135 97 219
|
syl3anc |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( R ` i ) < B ) |
| 221 |
220
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( R ` i ) < B ) |
| 222 |
214 215 216 217 221
|
eliood |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( R ` i ) e. ( ( R ` K ) (,) B ) ) |
| 223 |
206 207 208 209 210 211 212 222
|
dvbdfbdioolem1 |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) <_ ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( ( R ` i ) - ( R ` K ) ) ) /\ ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) <_ ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( B - A ) ) ) ) |
| 224 |
223
|
simpld |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) <_ ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( ( R ` i ) - ( R ` K ) ) ) ) |
| 225 |
|
1red |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> 1 e. RR ) |
| 226 |
210 225
|
readdcld |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) e. RR ) |
| 227 |
155
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( R ` K ) e. RR ) |
| 228 |
216 227
|
resubcld |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( ( R ` i ) - ( R ` K ) ) e. RR ) |
| 229 |
226 228
|
remulcld |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) x. ( ( R ` i ) - ( R ` K ) ) ) e. RR ) |
| 230 |
210 46
|
syl |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) e. RR ) |
| 231 |
227 216
|
posdifd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( ( R ` K ) < ( R ` i ) <-> 0 < ( ( R ` i ) - ( R ` K ) ) ) ) |
| 232 |
217 231
|
mpbid |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> 0 < ( ( R ` i ) - ( R ` K ) ) ) |
| 233 |
228 232
|
elrpd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( ( R ` i ) - ( R ` K ) ) e. RR+ ) |
| 234 |
210
|
ltp1d |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) < ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) |
| 235 |
210 230 233 234
|
ltmul1dd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( ( R ` i ) - ( R ` K ) ) ) < ( ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) x. ( ( R ` i ) - ( R ` K ) ) ) ) |
| 236 |
158
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( abs ` ( ( R ` i ) - ( R ` K ) ) ) e. RR ) |
| 237 |
71
|
ad2antrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) e. RR ) |
| 238 |
228
|
leabsd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( ( R ` i ) - ( R ` K ) ) <_ ( abs ` ( ( R ` i ) - ( R ` K ) ) ) ) |
| 239 |
176
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( abs ` ( ( R ` i ) - ( R ` K ) ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) |
| 240 |
228 236 237 238 239
|
lelttrd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( ( R ` i ) - ( R ` K ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) |
| 241 |
179
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) e. RR+ ) |
| 242 |
228 205 241
|
ltmuldiv2d |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( ( ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) x. ( ( R ` i ) - ( R ` K ) ) ) < x <-> ( ( R ` i ) - ( R ` K ) ) < ( x / ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) ) ) ) |
| 243 |
240 242
|
mpbird |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) + 1 ) x. ( ( R ` i ) - ( R ` K ) ) ) < x ) |
| 244 |
204 229 205 235 243
|
lttrd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( sup ( ran ( z e. ( A (,) B ) |-> ( abs ` ( ( RR _D F ) ` z ) ) ) , RR , < ) x. ( ( R ` i ) - ( R ` K ) ) ) < x ) |
| 245 |
202 204 205 224 244
|
lelttrd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ ( R ` K ) < ( R ` i ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) < x ) |
| 246 |
193 201 245
|
syl2anc |
|- ( ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ -. ( R ` i ) < ( R ` K ) ) /\ -. ( R ` i ) = ( R ` K ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) < x ) |
| 247 |
192 246
|
pm2.61dan |
|- ( ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) /\ -. ( R ` i ) < ( R ` K ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) < x ) |
| 248 |
184 247
|
pm2.61dan |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( abs ` ( ( F ` ( R ` i ) ) - ( F ` ( R ` K ) ) ) ) < x ) |
| 249 |
106 248
|
eqbrtrd |
|- ( ( ( ph /\ x e. RR+ ) /\ i e. ( ZZ>= ` K ) ) -> ( abs ` ( ( S ` i ) - ( S ` K ) ) ) < x ) |
| 250 |
249
|
ralrimiva |
|- ( ( ph /\ x e. RR+ ) -> A. i e. ( ZZ>= ` K ) ( abs ` ( ( S ` i ) - ( S ` K ) ) ) < x ) |
| 251 |
|
fveq2 |
|- ( k = K -> ( S ` k ) = ( S ` K ) ) |
| 252 |
251
|
oveq2d |
|- ( k = K -> ( ( S ` i ) - ( S ` k ) ) = ( ( S ` i ) - ( S ` K ) ) ) |
| 253 |
252
|
fveq2d |
|- ( k = K -> ( abs ` ( ( S ` i ) - ( S ` k ) ) ) = ( abs ` ( ( S ` i ) - ( S ` K ) ) ) ) |
| 254 |
253
|
breq1d |
|- ( k = K -> ( ( abs ` ( ( S ` i ) - ( S ` k ) ) ) < x <-> ( abs ` ( ( S ` i ) - ( S ` K ) ) ) < x ) ) |
| 255 |
167 254
|
raleqbidv |
|- ( k = K -> ( A. i e. ( ZZ>= ` k ) ( abs ` ( ( S ` i ) - ( S ` k ) ) ) < x <-> A. i e. ( ZZ>= ` K ) ( abs ` ( ( S ` i ) - ( S ` K ) ) ) < x ) ) |
| 256 |
255
|
rspcev |
|- ( ( K e. ( ZZ>= ` M ) /\ A. i e. ( ZZ>= ` K ) ( abs ` ( ( S ` i ) - ( S ` K ) ) ) < x ) -> E. k e. ( ZZ>= ` M ) A. i e. ( ZZ>= ` k ) ( abs ` ( ( S ` i ) - ( S ` k ) ) ) < x ) |
| 257 |
90 250 256
|
syl2anc |
|- ( ( ph /\ x e. RR+ ) -> E. k e. ( ZZ>= ` M ) A. i e. ( ZZ>= ` k ) ( abs ` ( ( S ` i ) - ( S ` k ) ) ) < x ) |
| 258 |
257
|
ralrimiva |
|- ( ph -> A. x e. RR+ E. k e. ( ZZ>= ` M ) A. i e. ( ZZ>= ` k ) ( abs ` ( ( S ` i ) - ( S ` k ) ) ) < x ) |
| 259 |
12 18 258
|
caurcvg |
|- ( ph -> S ~~> ( limsup ` S ) ) |