| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fperiodmul.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
| 2 |
|
fperiodmul.t |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 3 |
|
fperiodmul.n |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 4 |
|
fperiodmul.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 5 |
|
fperiodmul.per |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 6 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → 𝐹 : ℝ ⟶ ℂ ) |
| 7 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → 𝑇 ∈ ℝ ) |
| 8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
| 9 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → 𝑋 ∈ ℝ ) |
| 10 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 11 |
6 7 8 9 10
|
fperiodmullem |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑋 + ( 𝑁 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 12 |
4
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 13 |
3
|
zcnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 14 |
2
|
recnd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 15 |
13 14
|
mulcld |
⊢ ( 𝜑 → ( 𝑁 · 𝑇 ) ∈ ℂ ) |
| 16 |
12 15
|
subnegd |
⊢ ( 𝜑 → ( 𝑋 − - ( 𝑁 · 𝑇 ) ) = ( 𝑋 + ( 𝑁 · 𝑇 ) ) ) |
| 17 |
13 14
|
mulneg1d |
⊢ ( 𝜑 → ( - 𝑁 · 𝑇 ) = - ( 𝑁 · 𝑇 ) ) |
| 18 |
17
|
eqcomd |
⊢ ( 𝜑 → - ( 𝑁 · 𝑇 ) = ( - 𝑁 · 𝑇 ) ) |
| 19 |
18
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 − - ( 𝑁 · 𝑇 ) ) = ( 𝑋 − ( - 𝑁 · 𝑇 ) ) ) |
| 20 |
16 19
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑋 + ( 𝑁 · 𝑇 ) ) = ( 𝑋 − ( - 𝑁 · 𝑇 ) ) ) |
| 21 |
20
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + ( 𝑁 · 𝑇 ) ) ) = ( 𝐹 ‘ ( 𝑋 − ( - 𝑁 · 𝑇 ) ) ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑋 + ( 𝑁 · 𝑇 ) ) ) = ( 𝐹 ‘ ( 𝑋 − ( - 𝑁 · 𝑇 ) ) ) ) |
| 23 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝐹 : ℝ ⟶ ℂ ) |
| 24 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝑇 ∈ ℝ ) |
| 25 |
|
znnn0nn |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → - 𝑁 ∈ ℕ ) |
| 26 |
3 25
|
sylan |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 ∈ ℕ0 ) → - 𝑁 ∈ ℕ ) |
| 27 |
26
|
nnnn0d |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 ∈ ℕ0 ) → - 𝑁 ∈ ℕ0 ) |
| 28 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝑋 ∈ ℝ ) |
| 29 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℤ ) |
| 30 |
29
|
zred |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
| 31 |
30
|
renegcld |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 ∈ ℕ0 ) → - 𝑁 ∈ ℝ ) |
| 32 |
31 24
|
remulcld |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 ∈ ℕ0 ) → ( - 𝑁 · 𝑇 ) ∈ ℝ ) |
| 33 |
28 32
|
resubcld |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 ∈ ℕ0 ) → ( 𝑋 − ( - 𝑁 · 𝑇 ) ) ∈ ℝ ) |
| 34 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 35 |
23 24 27 33 34
|
fperiodmullem |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 ∈ ℕ0 ) → ( 𝐹 ‘ ( ( 𝑋 − ( - 𝑁 · 𝑇 ) ) + ( - 𝑁 · 𝑇 ) ) ) = ( 𝐹 ‘ ( 𝑋 − ( - 𝑁 · 𝑇 ) ) ) ) |
| 36 |
28
|
recnd |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝑋 ∈ ℂ ) |
| 37 |
30
|
recnd |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 38 |
37
|
negcld |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 ∈ ℕ0 ) → - 𝑁 ∈ ℂ ) |
| 39 |
24
|
recnd |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝑇 ∈ ℂ ) |
| 40 |
38 39
|
mulcld |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 ∈ ℕ0 ) → ( - 𝑁 · 𝑇 ) ∈ ℂ ) |
| 41 |
36 40
|
npcand |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 ∈ ℕ0 ) → ( ( 𝑋 − ( - 𝑁 · 𝑇 ) ) + ( - 𝑁 · 𝑇 ) ) = 𝑋 ) |
| 42 |
41
|
fveq2d |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 ∈ ℕ0 ) → ( 𝐹 ‘ ( ( 𝑋 − ( - 𝑁 · 𝑇 ) ) + ( - 𝑁 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 43 |
22 35 42
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑋 + ( 𝑁 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 44 |
11 43
|
pm2.61dan |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑋 + ( 𝑁 · 𝑇 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) |