| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upbdrech.a |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 2 |
|
upbdrech.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 3 |
|
upbdrech.bd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) |
| 4 |
|
upbdrech.c |
⊢ 𝐶 = sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) |
| 5 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ ) |
| 6 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ |
| 7 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 ∈ ℝ |
| 8 |
|
simp3 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) → 𝑧 = 𝐵 ) |
| 9 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 10 |
9
|
3adant3 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) → 𝐵 ∈ ℝ ) |
| 11 |
8 10
|
eqeltrd |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) → 𝑧 ∈ ℝ ) |
| 12 |
11
|
3exp |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ → ( 𝑥 ∈ 𝐴 → ( 𝑧 = 𝐵 → 𝑧 ∈ ℝ ) ) ) |
| 13 |
6 7 12
|
rexlimd |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ → ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ ℝ ) ) |
| 14 |
13
|
abssdv |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ⊆ ℝ ) |
| 15 |
5 14
|
syl |
⊢ ( 𝜑 → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ⊆ ℝ ) |
| 16 |
|
eqidd |
⊢ ( 𝑥 ∈ 𝐴 → 𝐵 = 𝐵 ) |
| 17 |
16
|
rgen |
⊢ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐵 |
| 18 |
|
r19.2z |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝐵 = 𝐵 ) |
| 19 |
1 17 18
|
sylancl |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝐵 = 𝐵 ) |
| 20 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 21 |
|
nfre1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 |
| 22 |
21
|
nfex |
⊢ Ⅎ 𝑥 ∃ 𝑧 ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 |
| 23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 24 |
|
elex |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ V ) |
| 25 |
2 24
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ V ) |
| 26 |
|
isset |
⊢ ( 𝐵 ∈ V ↔ ∃ 𝑧 𝑧 = 𝐵 ) |
| 27 |
25 26
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑧 𝑧 = 𝐵 ) |
| 28 |
|
rspe |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑧 𝑧 = 𝐵 ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 𝑧 = 𝐵 ) |
| 29 |
23 27 28
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 𝑧 = 𝐵 ) |
| 30 |
|
rexcom4 |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 𝑧 = 𝐵 ↔ ∃ 𝑧 ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
| 31 |
29 30
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑧 ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
| 32 |
31
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 = 𝐵 ) → ∃ 𝑧 ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
| 33 |
32
|
3exp |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝐵 = 𝐵 → ∃ 𝑧 ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) ) ) |
| 34 |
20 22 33
|
rexlimd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝐵 = 𝐵 → ∃ 𝑧 ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) ) |
| 35 |
19 34
|
mpd |
⊢ ( 𝜑 → ∃ 𝑧 ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
| 36 |
|
abn0 |
⊢ ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ≠ ∅ ↔ ∃ 𝑧 ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ) |
| 37 |
35 36
|
sylibr |
⊢ ( 𝜑 → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ≠ ∅ ) |
| 38 |
|
vex |
⊢ 𝑤 ∈ V |
| 39 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 = 𝐵 ↔ 𝑤 = 𝐵 ) ) |
| 40 |
39
|
rexbidv |
⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑤 = 𝐵 ) ) |
| 41 |
38 40
|
elab |
⊢ ( 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ↔ ∃ 𝑥 ∈ 𝐴 𝑤 = 𝐵 ) |
| 42 |
41
|
biimpi |
⊢ ( 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } → ∃ 𝑥 ∈ 𝐴 𝑤 = 𝐵 ) |
| 43 |
42
|
adantl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) → ∃ 𝑥 ∈ 𝐴 𝑤 = 𝐵 ) |
| 44 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 |
| 45 |
20 44
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) |
| 46 |
21
|
nfsab |
⊢ Ⅎ 𝑥 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } |
| 47 |
45 46
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) |
| 48 |
|
nfv |
⊢ Ⅎ 𝑥 𝑤 ≤ 𝑦 |
| 49 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = 𝐵 ) → 𝑤 = 𝐵 ) |
| 50 |
|
simp1r |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = 𝐵 ) → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) |
| 51 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = 𝐵 ) → 𝑥 ∈ 𝐴 ) |
| 52 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ 𝑦 ) |
| 53 |
50 51 52
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = 𝐵 ) → 𝐵 ≤ 𝑦 ) |
| 54 |
49 53
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = 𝐵 ) → 𝑤 ≤ 𝑦 ) |
| 55 |
54
|
3exp |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) → ( 𝑥 ∈ 𝐴 → ( 𝑤 = 𝐵 → 𝑤 ≤ 𝑦 ) ) ) |
| 56 |
55
|
adantr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) → ( 𝑥 ∈ 𝐴 → ( 𝑤 = 𝐵 → 𝑤 ≤ 𝑦 ) ) ) |
| 57 |
47 48 56
|
rexlimd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) → ( ∃ 𝑥 ∈ 𝐴 𝑤 = 𝐵 → 𝑤 ≤ 𝑦 ) ) |
| 58 |
43 57
|
mpd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) ∧ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) → 𝑤 ≤ 𝑦 ) |
| 59 |
58
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) → ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } 𝑤 ≤ 𝑦 ) |
| 60 |
59
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ) → ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } 𝑤 ≤ 𝑦 ) |
| 61 |
60
|
3exp |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ → ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } 𝑤 ≤ 𝑦 ) ) ) |
| 62 |
61
|
reximdvai |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } 𝑤 ≤ 𝑦 ) ) |
| 63 |
3 62
|
mpd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } 𝑤 ≤ 𝑦 ) |
| 64 |
|
suprcl |
⊢ ( ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ⊆ ℝ ∧ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } 𝑤 ≤ 𝑦 ) → sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ∈ ℝ ) |
| 65 |
15 37 63 64
|
syl3anc |
⊢ ( 𝜑 → sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ∈ ℝ ) |
| 66 |
4 65
|
eqeltrid |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 67 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ⊆ ℝ ) |
| 68 |
31 36
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ≠ ∅ ) |
| 69 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } 𝑤 ≤ 𝑦 ) |
| 70 |
|
elabrexg |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) |
| 71 |
23 2 70
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) |
| 72 |
|
suprub |
⊢ ( ( ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ⊆ ℝ ∧ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } 𝑤 ≤ 𝑦 ) ∧ 𝐵 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } ) → 𝐵 ≤ sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ) |
| 73 |
67 68 69 71 72
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ sup ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = 𝐵 } , ℝ , < ) ) |
| 74 |
73 4
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ 𝐶 ) |
| 75 |
74
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ) |
| 76 |
66 75
|
jca |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 ) ) |