| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upbdrech.a |
|
| 2 |
|
upbdrech.b |
|
| 3 |
|
upbdrech.bd |
|
| 4 |
|
upbdrech.c |
|
| 5 |
2
|
ralrimiva |
|
| 6 |
|
nfra1 |
|
| 7 |
|
nfv |
|
| 8 |
|
simp3 |
|
| 9 |
|
rspa |
|
| 10 |
9
|
3adant3 |
|
| 11 |
8 10
|
eqeltrd |
|
| 12 |
11
|
3exp |
|
| 13 |
6 7 12
|
rexlimd |
|
| 14 |
13
|
abssdv |
|
| 15 |
5 14
|
syl |
|
| 16 |
|
eqidd |
|
| 17 |
16
|
rgen |
|
| 18 |
|
r19.2z |
|
| 19 |
1 17 18
|
sylancl |
|
| 20 |
|
nfv |
|
| 21 |
|
nfre1 |
|
| 22 |
21
|
nfex |
|
| 23 |
|
simpr |
|
| 24 |
|
elex |
|
| 25 |
2 24
|
syl |
|
| 26 |
|
isset |
|
| 27 |
25 26
|
sylib |
|
| 28 |
|
rspe |
|
| 29 |
23 27 28
|
syl2anc |
|
| 30 |
|
rexcom4 |
|
| 31 |
29 30
|
sylib |
|
| 32 |
31
|
3adant3 |
|
| 33 |
32
|
3exp |
|
| 34 |
20 22 33
|
rexlimd |
|
| 35 |
19 34
|
mpd |
|
| 36 |
|
abn0 |
|
| 37 |
35 36
|
sylibr |
|
| 38 |
|
vex |
|
| 39 |
|
eqeq1 |
|
| 40 |
39
|
rexbidv |
|
| 41 |
38 40
|
elab |
|
| 42 |
41
|
biimpi |
|
| 43 |
42
|
adantl |
|
| 44 |
|
nfra1 |
|
| 45 |
20 44
|
nfan |
|
| 46 |
21
|
nfsab |
|
| 47 |
45 46
|
nfan |
|
| 48 |
|
nfv |
|
| 49 |
|
simp3 |
|
| 50 |
|
simp1r |
|
| 51 |
|
simp2 |
|
| 52 |
|
rspa |
|
| 53 |
50 51 52
|
syl2anc |
|
| 54 |
49 53
|
eqbrtrd |
|
| 55 |
54
|
3exp |
|
| 56 |
55
|
adantr |
|
| 57 |
47 48 56
|
rexlimd |
|
| 58 |
43 57
|
mpd |
|
| 59 |
58
|
ralrimiva |
|
| 60 |
59
|
3adant2 |
|
| 61 |
60
|
3exp |
|
| 62 |
61
|
reximdvai |
|
| 63 |
3 62
|
mpd |
|
| 64 |
|
suprcl |
|
| 65 |
15 37 63 64
|
syl3anc |
|
| 66 |
4 65
|
eqeltrid |
|
| 67 |
15
|
adantr |
|
| 68 |
31 36
|
sylibr |
|
| 69 |
63
|
adantr |
|
| 70 |
|
elabrexg |
|
| 71 |
23 2 70
|
syl2anc |
|
| 72 |
|
suprub |
|
| 73 |
67 68 69 71 72
|
syl31anc |
|
| 74 |
73 4
|
breqtrrdi |
|
| 75 |
74
|
ralrimiva |
|
| 76 |
66 75
|
jca |
|