Metamath Proof Explorer


Theorem elabrexg

Description: Elementhood in an image set. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion elabrexg xABVBy|xAy=B

Proof

Step Hyp Ref Expression
1 tru
2 csbeq1a x=zB=z/xB
3 2 equcoms z=xB=z/xB
4 trud z=x
5 3 4 2thd z=xB=z/xB
6 5 rspcev xAzAB=z/xB
7 1 6 mpan2 xAzAB=z/xB
8 7 adantr xABVzAB=z/xB
9 eqeq1 y=By=z/xBB=z/xB
10 9 rexbidv y=BzAy=z/xBzAB=z/xB
11 10 elabg BVBy|zAy=z/xBzAB=z/xB
12 11 adantl xABVBy|zAy=z/xBzAB=z/xB
13 8 12 mpbird xABVBy|zAy=z/xB
14 nfv zy=B
15 nfcsb1v _xz/xB
16 15 nfeq2 xy=z/xB
17 2 eqeq2d x=zy=By=z/xB
18 14 16 17 cbvrexw xAy=BzAy=z/xB
19 18 abbii y|xAy=B=y|zAy=z/xB
20 13 19 eleqtrrdi xABVBy|xAy=B