| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tru |
|- T. |
| 2 |
|
csbeq1a |
|- ( x = z -> B = [_ z / x ]_ B ) |
| 3 |
2
|
equcoms |
|- ( z = x -> B = [_ z / x ]_ B ) |
| 4 |
|
trud |
|- ( z = x -> T. ) |
| 5 |
3 4
|
2thd |
|- ( z = x -> ( B = [_ z / x ]_ B <-> T. ) ) |
| 6 |
5
|
rspcev |
|- ( ( x e. A /\ T. ) -> E. z e. A B = [_ z / x ]_ B ) |
| 7 |
1 6
|
mpan2 |
|- ( x e. A -> E. z e. A B = [_ z / x ]_ B ) |
| 8 |
7
|
adantr |
|- ( ( x e. A /\ B e. V ) -> E. z e. A B = [_ z / x ]_ B ) |
| 9 |
|
eqeq1 |
|- ( y = B -> ( y = [_ z / x ]_ B <-> B = [_ z / x ]_ B ) ) |
| 10 |
9
|
rexbidv |
|- ( y = B -> ( E. z e. A y = [_ z / x ]_ B <-> E. z e. A B = [_ z / x ]_ B ) ) |
| 11 |
10
|
elabg |
|- ( B e. V -> ( B e. { y | E. z e. A y = [_ z / x ]_ B } <-> E. z e. A B = [_ z / x ]_ B ) ) |
| 12 |
11
|
adantl |
|- ( ( x e. A /\ B e. V ) -> ( B e. { y | E. z e. A y = [_ z / x ]_ B } <-> E. z e. A B = [_ z / x ]_ B ) ) |
| 13 |
8 12
|
mpbird |
|- ( ( x e. A /\ B e. V ) -> B e. { y | E. z e. A y = [_ z / x ]_ B } ) |
| 14 |
|
nfv |
|- F/ z y = B |
| 15 |
|
nfcsb1v |
|- F/_ x [_ z / x ]_ B |
| 16 |
15
|
nfeq2 |
|- F/ x y = [_ z / x ]_ B |
| 17 |
2
|
eqeq2d |
|- ( x = z -> ( y = B <-> y = [_ z / x ]_ B ) ) |
| 18 |
14 16 17
|
cbvrexw |
|- ( E. x e. A y = B <-> E. z e. A y = [_ z / x ]_ B ) |
| 19 |
18
|
abbii |
|- { y | E. x e. A y = B } = { y | E. z e. A y = [_ z / x ]_ B } |
| 20 |
13 19
|
eleqtrrdi |
|- ( ( x e. A /\ B e. V ) -> B e. { y | E. x e. A y = B } ) |