| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tru |
⊢ ⊤ |
| 2 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 3 |
2
|
equcoms |
⊢ ( 𝑧 = 𝑥 → 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 4 |
|
trud |
⊢ ( 𝑧 = 𝑥 → ⊤ ) |
| 5 |
3 4
|
2thd |
⊢ ( 𝑧 = 𝑥 → ( 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ↔ ⊤ ) ) |
| 6 |
5
|
rspcev |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ⊤ ) → ∃ 𝑧 ∈ 𝐴 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 7 |
1 6
|
mpan2 |
⊢ ( 𝑥 ∈ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ∃ 𝑧 ∈ 𝐴 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 9 |
|
eqeq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ↔ 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
| 10 |
9
|
rexbidv |
⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑧 ∈ 𝐴 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ↔ ∃ 𝑧 ∈ 𝐴 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
| 11 |
10
|
elabg |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 } ↔ ∃ 𝑧 ∈ 𝐴 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐵 ∈ { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 } ↔ ∃ 𝑧 ∈ 𝐴 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
| 13 |
8 12
|
mpbird |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 } ) |
| 14 |
|
nfv |
⊢ Ⅎ 𝑧 𝑦 = 𝐵 |
| 15 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 |
| 16 |
15
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 |
| 17 |
2
|
eqeq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 = 𝐵 ↔ 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
| 18 |
14 16 17
|
cbvrexw |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃ 𝑧 ∈ 𝐴 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 19 |
18
|
abbii |
⊢ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } = { 𝑦 ∣ ∃ 𝑧 ∈ 𝐴 𝑦 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 } |
| 20 |
13 19
|
eleqtrrdi |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) |