| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fperiodmul.f |
|- ( ph -> F : RR --> CC ) |
| 2 |
|
fperiodmul.t |
|- ( ph -> T e. RR ) |
| 3 |
|
fperiodmul.n |
|- ( ph -> N e. ZZ ) |
| 4 |
|
fperiodmul.x |
|- ( ph -> X e. RR ) |
| 5 |
|
fperiodmul.per |
|- ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 6 |
1
|
adantr |
|- ( ( ph /\ N e. NN0 ) -> F : RR --> CC ) |
| 7 |
2
|
adantr |
|- ( ( ph /\ N e. NN0 ) -> T e. RR ) |
| 8 |
|
simpr |
|- ( ( ph /\ N e. NN0 ) -> N e. NN0 ) |
| 9 |
4
|
adantr |
|- ( ( ph /\ N e. NN0 ) -> X e. RR ) |
| 10 |
5
|
adantlr |
|- ( ( ( ph /\ N e. NN0 ) /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 11 |
6 7 8 9 10
|
fperiodmullem |
|- ( ( ph /\ N e. NN0 ) -> ( F ` ( X + ( N x. T ) ) ) = ( F ` X ) ) |
| 12 |
4
|
recnd |
|- ( ph -> X e. CC ) |
| 13 |
3
|
zcnd |
|- ( ph -> N e. CC ) |
| 14 |
2
|
recnd |
|- ( ph -> T e. CC ) |
| 15 |
13 14
|
mulcld |
|- ( ph -> ( N x. T ) e. CC ) |
| 16 |
12 15
|
subnegd |
|- ( ph -> ( X - -u ( N x. T ) ) = ( X + ( N x. T ) ) ) |
| 17 |
13 14
|
mulneg1d |
|- ( ph -> ( -u N x. T ) = -u ( N x. T ) ) |
| 18 |
17
|
eqcomd |
|- ( ph -> -u ( N x. T ) = ( -u N x. T ) ) |
| 19 |
18
|
oveq2d |
|- ( ph -> ( X - -u ( N x. T ) ) = ( X - ( -u N x. T ) ) ) |
| 20 |
16 19
|
eqtr3d |
|- ( ph -> ( X + ( N x. T ) ) = ( X - ( -u N x. T ) ) ) |
| 21 |
20
|
fveq2d |
|- ( ph -> ( F ` ( X + ( N x. T ) ) ) = ( F ` ( X - ( -u N x. T ) ) ) ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ -. N e. NN0 ) -> ( F ` ( X + ( N x. T ) ) ) = ( F ` ( X - ( -u N x. T ) ) ) ) |
| 23 |
1
|
adantr |
|- ( ( ph /\ -. N e. NN0 ) -> F : RR --> CC ) |
| 24 |
2
|
adantr |
|- ( ( ph /\ -. N e. NN0 ) -> T e. RR ) |
| 25 |
|
znnn0nn |
|- ( ( N e. ZZ /\ -. N e. NN0 ) -> -u N e. NN ) |
| 26 |
3 25
|
sylan |
|- ( ( ph /\ -. N e. NN0 ) -> -u N e. NN ) |
| 27 |
26
|
nnnn0d |
|- ( ( ph /\ -. N e. NN0 ) -> -u N e. NN0 ) |
| 28 |
4
|
adantr |
|- ( ( ph /\ -. N e. NN0 ) -> X e. RR ) |
| 29 |
3
|
adantr |
|- ( ( ph /\ -. N e. NN0 ) -> N e. ZZ ) |
| 30 |
29
|
zred |
|- ( ( ph /\ -. N e. NN0 ) -> N e. RR ) |
| 31 |
30
|
renegcld |
|- ( ( ph /\ -. N e. NN0 ) -> -u N e. RR ) |
| 32 |
31 24
|
remulcld |
|- ( ( ph /\ -. N e. NN0 ) -> ( -u N x. T ) e. RR ) |
| 33 |
28 32
|
resubcld |
|- ( ( ph /\ -. N e. NN0 ) -> ( X - ( -u N x. T ) ) e. RR ) |
| 34 |
5
|
adantlr |
|- ( ( ( ph /\ -. N e. NN0 ) /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 35 |
23 24 27 33 34
|
fperiodmullem |
|- ( ( ph /\ -. N e. NN0 ) -> ( F ` ( ( X - ( -u N x. T ) ) + ( -u N x. T ) ) ) = ( F ` ( X - ( -u N x. T ) ) ) ) |
| 36 |
28
|
recnd |
|- ( ( ph /\ -. N e. NN0 ) -> X e. CC ) |
| 37 |
30
|
recnd |
|- ( ( ph /\ -. N e. NN0 ) -> N e. CC ) |
| 38 |
37
|
negcld |
|- ( ( ph /\ -. N e. NN0 ) -> -u N e. CC ) |
| 39 |
24
|
recnd |
|- ( ( ph /\ -. N e. NN0 ) -> T e. CC ) |
| 40 |
38 39
|
mulcld |
|- ( ( ph /\ -. N e. NN0 ) -> ( -u N x. T ) e. CC ) |
| 41 |
36 40
|
npcand |
|- ( ( ph /\ -. N e. NN0 ) -> ( ( X - ( -u N x. T ) ) + ( -u N x. T ) ) = X ) |
| 42 |
41
|
fveq2d |
|- ( ( ph /\ -. N e. NN0 ) -> ( F ` ( ( X - ( -u N x. T ) ) + ( -u N x. T ) ) ) = ( F ` X ) ) |
| 43 |
22 35 42
|
3eqtr2d |
|- ( ( ph /\ -. N e. NN0 ) -> ( F ` ( X + ( N x. T ) ) ) = ( F ` X ) ) |
| 44 |
11 43
|
pm2.61dan |
|- ( ph -> ( F ` ( X + ( N x. T ) ) ) = ( F ` X ) ) |