| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fperiodmullem.f |
|- ( ph -> F : RR --> CC ) |
| 2 |
|
fperiodmullem.t |
|- ( ph -> T e. RR ) |
| 3 |
|
fperiodmullem.n |
|- ( ph -> N e. NN0 ) |
| 4 |
|
fperiodmullem.x |
|- ( ph -> X e. RR ) |
| 5 |
|
fperiodmullem.per |
|- ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 6 |
|
oveq1 |
|- ( n = 0 -> ( n x. T ) = ( 0 x. T ) ) |
| 7 |
6
|
oveq2d |
|- ( n = 0 -> ( X + ( n x. T ) ) = ( X + ( 0 x. T ) ) ) |
| 8 |
7
|
fveqeq2d |
|- ( n = 0 -> ( ( F ` ( X + ( n x. T ) ) ) = ( F ` X ) <-> ( F ` ( X + ( 0 x. T ) ) ) = ( F ` X ) ) ) |
| 9 |
8
|
imbi2d |
|- ( n = 0 -> ( ( ph -> ( F ` ( X + ( n x. T ) ) ) = ( F ` X ) ) <-> ( ph -> ( F ` ( X + ( 0 x. T ) ) ) = ( F ` X ) ) ) ) |
| 10 |
|
oveq1 |
|- ( n = m -> ( n x. T ) = ( m x. T ) ) |
| 11 |
10
|
oveq2d |
|- ( n = m -> ( X + ( n x. T ) ) = ( X + ( m x. T ) ) ) |
| 12 |
11
|
fveqeq2d |
|- ( n = m -> ( ( F ` ( X + ( n x. T ) ) ) = ( F ` X ) <-> ( F ` ( X + ( m x. T ) ) ) = ( F ` X ) ) ) |
| 13 |
12
|
imbi2d |
|- ( n = m -> ( ( ph -> ( F ` ( X + ( n x. T ) ) ) = ( F ` X ) ) <-> ( ph -> ( F ` ( X + ( m x. T ) ) ) = ( F ` X ) ) ) ) |
| 14 |
|
oveq1 |
|- ( n = ( m + 1 ) -> ( n x. T ) = ( ( m + 1 ) x. T ) ) |
| 15 |
14
|
oveq2d |
|- ( n = ( m + 1 ) -> ( X + ( n x. T ) ) = ( X + ( ( m + 1 ) x. T ) ) ) |
| 16 |
15
|
fveqeq2d |
|- ( n = ( m + 1 ) -> ( ( F ` ( X + ( n x. T ) ) ) = ( F ` X ) <-> ( F ` ( X + ( ( m + 1 ) x. T ) ) ) = ( F ` X ) ) ) |
| 17 |
16
|
imbi2d |
|- ( n = ( m + 1 ) -> ( ( ph -> ( F ` ( X + ( n x. T ) ) ) = ( F ` X ) ) <-> ( ph -> ( F ` ( X + ( ( m + 1 ) x. T ) ) ) = ( F ` X ) ) ) ) |
| 18 |
|
oveq1 |
|- ( n = N -> ( n x. T ) = ( N x. T ) ) |
| 19 |
18
|
oveq2d |
|- ( n = N -> ( X + ( n x. T ) ) = ( X + ( N x. T ) ) ) |
| 20 |
19
|
fveqeq2d |
|- ( n = N -> ( ( F ` ( X + ( n x. T ) ) ) = ( F ` X ) <-> ( F ` ( X + ( N x. T ) ) ) = ( F ` X ) ) ) |
| 21 |
20
|
imbi2d |
|- ( n = N -> ( ( ph -> ( F ` ( X + ( n x. T ) ) ) = ( F ` X ) ) <-> ( ph -> ( F ` ( X + ( N x. T ) ) ) = ( F ` X ) ) ) ) |
| 22 |
2
|
recnd |
|- ( ph -> T e. CC ) |
| 23 |
22
|
mul02d |
|- ( ph -> ( 0 x. T ) = 0 ) |
| 24 |
23
|
oveq2d |
|- ( ph -> ( X + ( 0 x. T ) ) = ( X + 0 ) ) |
| 25 |
4
|
recnd |
|- ( ph -> X e. CC ) |
| 26 |
25
|
addridd |
|- ( ph -> ( X + 0 ) = X ) |
| 27 |
24 26
|
eqtrd |
|- ( ph -> ( X + ( 0 x. T ) ) = X ) |
| 28 |
27
|
fveq2d |
|- ( ph -> ( F ` ( X + ( 0 x. T ) ) ) = ( F ` X ) ) |
| 29 |
|
simp3 |
|- ( ( m e. NN0 /\ ( ph -> ( F ` ( X + ( m x. T ) ) ) = ( F ` X ) ) /\ ph ) -> ph ) |
| 30 |
|
simp1 |
|- ( ( m e. NN0 /\ ( ph -> ( F ` ( X + ( m x. T ) ) ) = ( F ` X ) ) /\ ph ) -> m e. NN0 ) |
| 31 |
|
simpr |
|- ( ( ( ph -> ( F ` ( X + ( m x. T ) ) ) = ( F ` X ) ) /\ ph ) -> ph ) |
| 32 |
|
simpl |
|- ( ( ( ph -> ( F ` ( X + ( m x. T ) ) ) = ( F ` X ) ) /\ ph ) -> ( ph -> ( F ` ( X + ( m x. T ) ) ) = ( F ` X ) ) ) |
| 33 |
31 32
|
mpd |
|- ( ( ( ph -> ( F ` ( X + ( m x. T ) ) ) = ( F ` X ) ) /\ ph ) -> ( F ` ( X + ( m x. T ) ) ) = ( F ` X ) ) |
| 34 |
33
|
3adant1 |
|- ( ( m e. NN0 /\ ( ph -> ( F ` ( X + ( m x. T ) ) ) = ( F ` X ) ) /\ ph ) -> ( F ` ( X + ( m x. T ) ) ) = ( F ` X ) ) |
| 35 |
|
nn0cn |
|- ( m e. NN0 -> m e. CC ) |
| 36 |
35
|
adantl |
|- ( ( ph /\ m e. NN0 ) -> m e. CC ) |
| 37 |
|
1cnd |
|- ( ( ph /\ m e. NN0 ) -> 1 e. CC ) |
| 38 |
22
|
adantr |
|- ( ( ph /\ m e. NN0 ) -> T e. CC ) |
| 39 |
36 37 38
|
adddird |
|- ( ( ph /\ m e. NN0 ) -> ( ( m + 1 ) x. T ) = ( ( m x. T ) + ( 1 x. T ) ) ) |
| 40 |
39
|
oveq2d |
|- ( ( ph /\ m e. NN0 ) -> ( X + ( ( m + 1 ) x. T ) ) = ( X + ( ( m x. T ) + ( 1 x. T ) ) ) ) |
| 41 |
25
|
adantr |
|- ( ( ph /\ m e. NN0 ) -> X e. CC ) |
| 42 |
36 38
|
mulcld |
|- ( ( ph /\ m e. NN0 ) -> ( m x. T ) e. CC ) |
| 43 |
37 38
|
mulcld |
|- ( ( ph /\ m e. NN0 ) -> ( 1 x. T ) e. CC ) |
| 44 |
41 42 43
|
addassd |
|- ( ( ph /\ m e. NN0 ) -> ( ( X + ( m x. T ) ) + ( 1 x. T ) ) = ( X + ( ( m x. T ) + ( 1 x. T ) ) ) ) |
| 45 |
38
|
mullidd |
|- ( ( ph /\ m e. NN0 ) -> ( 1 x. T ) = T ) |
| 46 |
45
|
oveq2d |
|- ( ( ph /\ m e. NN0 ) -> ( ( X + ( m x. T ) ) + ( 1 x. T ) ) = ( ( X + ( m x. T ) ) + T ) ) |
| 47 |
40 44 46
|
3eqtr2d |
|- ( ( ph /\ m e. NN0 ) -> ( X + ( ( m + 1 ) x. T ) ) = ( ( X + ( m x. T ) ) + T ) ) |
| 48 |
47
|
fveq2d |
|- ( ( ph /\ m e. NN0 ) -> ( F ` ( X + ( ( m + 1 ) x. T ) ) ) = ( F ` ( ( X + ( m x. T ) ) + T ) ) ) |
| 49 |
48
|
3adant3 |
|- ( ( ph /\ m e. NN0 /\ ( F ` ( X + ( m x. T ) ) ) = ( F ` X ) ) -> ( F ` ( X + ( ( m + 1 ) x. T ) ) ) = ( F ` ( ( X + ( m x. T ) ) + T ) ) ) |
| 50 |
4
|
adantr |
|- ( ( ph /\ m e. NN0 ) -> X e. RR ) |
| 51 |
|
nn0re |
|- ( m e. NN0 -> m e. RR ) |
| 52 |
51
|
adantl |
|- ( ( ph /\ m e. NN0 ) -> m e. RR ) |
| 53 |
2
|
adantr |
|- ( ( ph /\ m e. NN0 ) -> T e. RR ) |
| 54 |
52 53
|
remulcld |
|- ( ( ph /\ m e. NN0 ) -> ( m x. T ) e. RR ) |
| 55 |
50 54
|
readdcld |
|- ( ( ph /\ m e. NN0 ) -> ( X + ( m x. T ) ) e. RR ) |
| 56 |
55
|
ex |
|- ( ph -> ( m e. NN0 -> ( X + ( m x. T ) ) e. RR ) ) |
| 57 |
56
|
imdistani |
|- ( ( ph /\ m e. NN0 ) -> ( ph /\ ( X + ( m x. T ) ) e. RR ) ) |
| 58 |
|
eleq1 |
|- ( x = ( X + ( m x. T ) ) -> ( x e. RR <-> ( X + ( m x. T ) ) e. RR ) ) |
| 59 |
58
|
anbi2d |
|- ( x = ( X + ( m x. T ) ) -> ( ( ph /\ x e. RR ) <-> ( ph /\ ( X + ( m x. T ) ) e. RR ) ) ) |
| 60 |
|
fvoveq1 |
|- ( x = ( X + ( m x. T ) ) -> ( F ` ( x + T ) ) = ( F ` ( ( X + ( m x. T ) ) + T ) ) ) |
| 61 |
|
fveq2 |
|- ( x = ( X + ( m x. T ) ) -> ( F ` x ) = ( F ` ( X + ( m x. T ) ) ) ) |
| 62 |
60 61
|
eqeq12d |
|- ( x = ( X + ( m x. T ) ) -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( ( X + ( m x. T ) ) + T ) ) = ( F ` ( X + ( m x. T ) ) ) ) ) |
| 63 |
59 62
|
imbi12d |
|- ( x = ( X + ( m x. T ) ) -> ( ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ ( X + ( m x. T ) ) e. RR ) -> ( F ` ( ( X + ( m x. T ) ) + T ) ) = ( F ` ( X + ( m x. T ) ) ) ) ) ) |
| 64 |
63 5
|
vtoclg |
|- ( ( X + ( m x. T ) ) e. RR -> ( ( ph /\ ( X + ( m x. T ) ) e. RR ) -> ( F ` ( ( X + ( m x. T ) ) + T ) ) = ( F ` ( X + ( m x. T ) ) ) ) ) |
| 65 |
55 57 64
|
sylc |
|- ( ( ph /\ m e. NN0 ) -> ( F ` ( ( X + ( m x. T ) ) + T ) ) = ( F ` ( X + ( m x. T ) ) ) ) |
| 66 |
65
|
3adant3 |
|- ( ( ph /\ m e. NN0 /\ ( F ` ( X + ( m x. T ) ) ) = ( F ` X ) ) -> ( F ` ( ( X + ( m x. T ) ) + T ) ) = ( F ` ( X + ( m x. T ) ) ) ) |
| 67 |
|
simp3 |
|- ( ( ph /\ m e. NN0 /\ ( F ` ( X + ( m x. T ) ) ) = ( F ` X ) ) -> ( F ` ( X + ( m x. T ) ) ) = ( F ` X ) ) |
| 68 |
49 66 67
|
3eqtrd |
|- ( ( ph /\ m e. NN0 /\ ( F ` ( X + ( m x. T ) ) ) = ( F ` X ) ) -> ( F ` ( X + ( ( m + 1 ) x. T ) ) ) = ( F ` X ) ) |
| 69 |
29 30 34 68
|
syl3anc |
|- ( ( m e. NN0 /\ ( ph -> ( F ` ( X + ( m x. T ) ) ) = ( F ` X ) ) /\ ph ) -> ( F ` ( X + ( ( m + 1 ) x. T ) ) ) = ( F ` X ) ) |
| 70 |
69
|
3exp |
|- ( m e. NN0 -> ( ( ph -> ( F ` ( X + ( m x. T ) ) ) = ( F ` X ) ) -> ( ph -> ( F ` ( X + ( ( m + 1 ) x. T ) ) ) = ( F ` X ) ) ) ) |
| 71 |
9 13 17 21 28 70
|
nn0ind |
|- ( N e. NN0 -> ( ph -> ( F ` ( X + ( N x. T ) ) ) = ( F ` X ) ) ) |
| 72 |
3 71
|
mpcom |
|- ( ph -> ( F ` ( X + ( N x. T ) ) ) = ( F ` X ) ) |