Metamath Proof Explorer


Theorem fperiodmul

Description: A function with period T is also periodic with period multiple of T. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fperiodmul.f φF:
fperiodmul.t φT
fperiodmul.n φN
fperiodmul.x φX
fperiodmul.per φxFx+T=Fx
Assertion fperiodmul φFX+NT=FX

Proof

Step Hyp Ref Expression
1 fperiodmul.f φF:
2 fperiodmul.t φT
3 fperiodmul.n φN
4 fperiodmul.x φX
5 fperiodmul.per φxFx+T=Fx
6 1 adantr φN0F:
7 2 adantr φN0T
8 simpr φN0N0
9 4 adantr φN0X
10 5 adantlr φN0xFx+T=Fx
11 6 7 8 9 10 fperiodmullem φN0FX+NT=FX
12 4 recnd φX
13 3 zcnd φN
14 2 recnd φT
15 13 14 mulcld φNT
16 12 15 subnegd φXNT=X+NT
17 13 14 mulneg1d φ- NT=NT
18 17 eqcomd φNT=- NT
19 18 oveq2d φXNT=X- NT
20 16 19 eqtr3d φX+NT=X- NT
21 20 fveq2d φFX+NT=FX- NT
22 21 adantr φ¬N0FX+NT=FX- NT
23 1 adantr φ¬N0F:
24 2 adantr φ¬N0T
25 znnn0nn N¬N0N
26 3 25 sylan φ¬N0N
27 26 nnnn0d φ¬N0N0
28 4 adantr φ¬N0X
29 3 adantr φ¬N0N
30 29 zred φ¬N0N
31 30 renegcld φ¬N0N
32 31 24 remulcld φ¬N0- NT
33 28 32 resubcld φ¬N0X- NT
34 5 adantlr φ¬N0xFx+T=Fx
35 23 24 27 33 34 fperiodmullem φ¬N0FX-- NT+- NT=FX- NT
36 28 recnd φ¬N0X
37 30 recnd φ¬N0N
38 37 negcld φ¬N0N
39 24 recnd φ¬N0T
40 38 39 mulcld φ¬N0- NT
41 36 40 npcand φ¬N0X-- NT+- NT=X
42 41 fveq2d φ¬N0FX-- NT+- NT=FX
43 22 35 42 3eqtr2d φ¬N0FX+NT=FX
44 11 43 pm2.61dan φFX+NT=FX