Description: A function with period T is also periodic with period multiple of T. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fperiodmul.f | |
|
fperiodmul.t | |
||
fperiodmul.n | |
||
fperiodmul.x | |
||
fperiodmul.per | |
||
Assertion | fperiodmul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fperiodmul.f | |
|
2 | fperiodmul.t | |
|
3 | fperiodmul.n | |
|
4 | fperiodmul.x | |
|
5 | fperiodmul.per | |
|
6 | 1 | adantr | |
7 | 2 | adantr | |
8 | simpr | |
|
9 | 4 | adantr | |
10 | 5 | adantlr | |
11 | 6 7 8 9 10 | fperiodmullem | |
12 | 4 | recnd | |
13 | 3 | zcnd | |
14 | 2 | recnd | |
15 | 13 14 | mulcld | |
16 | 12 15 | subnegd | |
17 | 13 14 | mulneg1d | |
18 | 17 | eqcomd | |
19 | 18 | oveq2d | |
20 | 16 19 | eqtr3d | |
21 | 20 | fveq2d | |
22 | 21 | adantr | |
23 | 1 | adantr | |
24 | 2 | adantr | |
25 | znnn0nn | |
|
26 | 3 25 | sylan | |
27 | 26 | nnnn0d | |
28 | 4 | adantr | |
29 | 3 | adantr | |
30 | 29 | zred | |
31 | 30 | renegcld | |
32 | 31 24 | remulcld | |
33 | 28 32 | resubcld | |
34 | 5 | adantlr | |
35 | 23 24 27 33 34 | fperiodmullem | |
36 | 28 | recnd | |
37 | 30 | recnd | |
38 | 37 | negcld | |
39 | 24 | recnd | |
40 | 38 39 | mulcld | |
41 | 36 40 | npcand | |
42 | 41 | fveq2d | |
43 | 22 35 42 | 3eqtr2d | |
44 | 11 43 | pm2.61dan | |