Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem95.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
2 |
|
fourierdlem95.xre |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
3 |
|
fourierdlem95.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = ( - π + 𝑋 ) ∧ ( 𝑝 ‘ 𝑚 ) = ( π + 𝑋 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
4 |
|
fourierdlem95.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
5 |
|
fourierdlem95.v |
⊢ ( 𝜑 → 𝑉 ∈ ( 𝑃 ‘ 𝑀 ) ) |
6 |
|
fourierdlem95.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝑉 ) |
7 |
|
fourierdlem95.fcn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
8 |
|
fourierdlem95.r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑉 ‘ 𝑖 ) ) ) |
9 |
|
fourierdlem95.l |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
10 |
|
fourierdlem95.h |
⊢ 𝐻 = ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 0 , ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) / 𝑠 ) ) ) |
11 |
|
fourierdlem95.k |
⊢ 𝐾 = ( 𝑠 ∈ ( - π [,] π ) ↦ if ( 𝑠 = 0 , 1 , ( 𝑠 / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
12 |
|
fourierdlem95.u |
⊢ 𝑈 = ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝐻 ‘ 𝑠 ) · ( 𝐾 ‘ 𝑠 ) ) ) |
13 |
|
fourierdlem95.s |
⊢ 𝑆 = ( 𝑠 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) ) |
14 |
|
fourierdlem95.g |
⊢ 𝐺 = ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝑈 ‘ 𝑠 ) · ( 𝑆 ‘ 𝑠 ) ) ) |
15 |
|
fourierdlem95.i |
⊢ 𝐼 = ( ℝ D 𝐹 ) |
16 |
|
fourierdlem95.ifn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐼 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℝ ) |
17 |
|
fourierdlem95.b |
⊢ ( 𝜑 → 𝐵 ∈ ( ( 𝐼 ↾ ( -∞ (,) 𝑋 ) ) limℂ 𝑋 ) ) |
18 |
|
fourierdlem95.c |
⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝐼 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ) |
19 |
|
fourierdlem95.y |
⊢ ( 𝜑 → 𝑌 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ) |
20 |
|
fourierdlem95.w |
⊢ ( 𝜑 → 𝑊 ∈ ( ( 𝐹 ↾ ( -∞ (,) 𝑋 ) ) limℂ 𝑋 ) ) |
21 |
|
fourierdlem95.admvol |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
22 |
|
fourierdlem95.ass |
⊢ ( 𝜑 → 𝐴 ⊆ ( ( - π [,] π ) ∖ { 0 } ) ) |
23 |
|
fourierlemenplusacver2eqitgdirker.e |
⊢ 𝐸 = ( 𝑛 ∈ ℕ ↦ ( ∫ 𝐴 ( 𝐺 ‘ 𝑠 ) d 𝑠 / π ) ) |
24 |
|
fourierdlem95.d |
⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ ( 𝑠 ∈ ℝ ↦ if ( ( 𝑠 mod ( 2 · π ) ) = 0 , ( ( ( 2 · 𝑛 ) + 1 ) / ( 2 · π ) ) , ( ( sin ‘ ( ( 𝑛 + ( 1 / 2 ) ) · 𝑠 ) ) / ( ( 2 · π ) · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) ) |
25 |
|
fourierdlem95.o |
⊢ ( 𝜑 → 𝑂 ∈ ℝ ) |
26 |
|
fourierdlem95.ifeqo |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → if ( 0 < 𝑠 , 𝑌 , 𝑊 ) = 𝑂 ) |
27 |
|
fourierdlem95.itgdirker |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ 𝐴 ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) d 𝑠 = ( 1 / 2 ) ) |
28 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
29 |
22
|
difss2d |
⊢ ( 𝜑 → 𝐴 ⊆ ( - π [,] π ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ⊆ ( - π [,] π ) ) |
31 |
30
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ ( - π [,] π ) ) |
32 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐹 : ℝ ⟶ ℝ ) |
33 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑋 ∈ ℝ ) |
34 |
|
ioossre |
⊢ ( 𝑋 (,) +∞ ) ⊆ ℝ |
35 |
34
|
a1i |
⊢ ( 𝜑 → ( 𝑋 (,) +∞ ) ⊆ ℝ ) |
36 |
1 35
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) : ( 𝑋 (,) +∞ ) ⟶ ℝ ) |
37 |
|
ioosscn |
⊢ ( 𝑋 (,) +∞ ) ⊆ ℂ |
38 |
37
|
a1i |
⊢ ( 𝜑 → ( 𝑋 (,) +∞ ) ⊆ ℂ ) |
39 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
40 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
41 |
40
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
42 |
2
|
ltpnfd |
⊢ ( 𝜑 → 𝑋 < +∞ ) |
43 |
39 41 2 42
|
lptioo1cn |
⊢ ( 𝜑 → 𝑋 ∈ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑋 (,) +∞ ) ) ) |
44 |
36 38 43 19
|
limcrecl |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑌 ∈ ℝ ) |
46 |
|
ioossre |
⊢ ( -∞ (,) 𝑋 ) ⊆ ℝ |
47 |
46
|
a1i |
⊢ ( 𝜑 → ( -∞ (,) 𝑋 ) ⊆ ℝ ) |
48 |
1 47
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( -∞ (,) 𝑋 ) ) : ( -∞ (,) 𝑋 ) ⟶ ℝ ) |
49 |
|
ioosscn |
⊢ ( -∞ (,) 𝑋 ) ⊆ ℂ |
50 |
49
|
a1i |
⊢ ( 𝜑 → ( -∞ (,) 𝑋 ) ⊆ ℂ ) |
51 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
52 |
51
|
a1i |
⊢ ( 𝜑 → -∞ ∈ ℝ* ) |
53 |
2
|
mnfltd |
⊢ ( 𝜑 → -∞ < 𝑋 ) |
54 |
39 52 2 53
|
lptioo2cn |
⊢ ( 𝜑 → 𝑋 ∈ ( ( limPt ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( -∞ (,) 𝑋 ) ) ) |
55 |
48 50 54 20
|
limcrecl |
⊢ ( 𝜑 → 𝑊 ∈ ℝ ) |
56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑊 ∈ ℝ ) |
57 |
28
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℝ ) |
58 |
32 33 45 56 10 11 12 57 13 14
|
fourierdlem67 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐺 : ( - π [,] π ) ⟶ ℝ ) |
59 |
58
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( 𝐺 ‘ 𝑠 ) ∈ ℝ ) |
60 |
31 59
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑠 ) ∈ ℝ ) |
61 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ dom vol ) |
62 |
58
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐺 = ( 𝑠 ∈ ( - π [,] π ) ↦ ( 𝐺 ‘ 𝑠 ) ) ) |
63 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑋 ∈ ran 𝑉 ) |
64 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑌 ∈ ( ( 𝐹 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ) |
65 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑊 ∈ ( ( 𝐹 ↾ ( -∞ (,) 𝑋 ) ) limℂ 𝑋 ) ) |
66 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑀 ∈ ℕ ) |
67 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑉 ∈ ( 𝑃 ‘ 𝑀 ) ) |
68 |
7
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
69 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑉 ‘ 𝑖 ) ) ) |
70 |
9
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) |
71 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑉 ‘ 𝑗 ) = ( 𝑉 ‘ 𝑖 ) ) |
72 |
71
|
oveq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) = ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
73 |
72
|
cbvmptv |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑗 ) − 𝑋 ) ) = ( 𝑖 ∈ ( 0 ... 𝑀 ) ↦ ( ( 𝑉 ‘ 𝑖 ) − 𝑋 ) ) |
74 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = - π ∧ ( 𝑝 ‘ 𝑚 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = - π ∧ ( 𝑝 ‘ 𝑚 ) = π ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
75 |
16
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐼 ↾ ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ) : ( ( 𝑉 ‘ 𝑖 ) (,) ( 𝑉 ‘ ( 𝑖 + 1 ) ) ) ⟶ ℝ ) |
76 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐵 ∈ ( ( 𝐼 ↾ ( -∞ (,) 𝑋 ) ) limℂ 𝑋 ) ) |
77 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐶 ∈ ( ( 𝐼 ↾ ( 𝑋 (,) +∞ ) ) limℂ 𝑋 ) ) |
78 |
3 32 63 64 65 10 11 12 57 13 14 66 67 68 69 70 73 74 15 75 76 77
|
fourierdlem88 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐺 ∈ 𝐿1 ) |
79 |
62 78
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ ( - π [,] π ) ↦ ( 𝐺 ‘ 𝑠 ) ) ∈ 𝐿1 ) |
80 |
30 61 59 79
|
iblss |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑠 ) ) ∈ 𝐿1 ) |
81 |
60 80
|
itgrecl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ 𝐴 ( 𝐺 ‘ 𝑠 ) d 𝑠 ∈ ℝ ) |
82 |
|
pire |
⊢ π ∈ ℝ |
83 |
82
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → π ∈ ℝ ) |
84 |
|
pipos |
⊢ 0 < π |
85 |
82 84
|
gt0ne0ii |
⊢ π ≠ 0 |
86 |
85
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → π ≠ 0 ) |
87 |
81 83 86
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫ 𝐴 ( 𝐺 ‘ 𝑠 ) d 𝑠 / π ) ∈ ℝ ) |
88 |
23
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ∫ 𝐴 ( 𝐺 ‘ 𝑠 ) d 𝑠 / π ) ∈ ℝ ) → ( 𝐸 ‘ 𝑛 ) = ( ∫ 𝐴 ( 𝐺 ‘ 𝑠 ) d 𝑠 / π ) ) |
89 |
28 87 88
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐸 ‘ 𝑛 ) = ( ∫ 𝐴 ( 𝐺 ‘ 𝑠 ) d 𝑠 / π ) ) |
90 |
25
|
recnd |
⊢ ( 𝜑 → 𝑂 ∈ ℂ ) |
91 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
92 |
|
2ne0 |
⊢ 2 ≠ 0 |
93 |
92
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
94 |
90 91 93
|
divrecd |
⊢ ( 𝜑 → ( 𝑂 / 2 ) = ( 𝑂 · ( 1 / 2 ) ) ) |
95 |
94
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑂 / 2 ) = ( 𝑂 · ( 1 / 2 ) ) ) |
96 |
27
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 / 2 ) = ∫ 𝐴 ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) d 𝑠 ) |
97 |
96
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑂 · ( 1 / 2 ) ) = ( 𝑂 · ∫ 𝐴 ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) d 𝑠 ) ) |
98 |
95 97
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑂 / 2 ) = ( 𝑂 · ∫ 𝐴 ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) d 𝑠 ) ) |
99 |
89 98
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐸 ‘ 𝑛 ) + ( 𝑂 / 2 ) ) = ( ( ∫ 𝐴 ( 𝐺 ‘ 𝑠 ) d 𝑠 / π ) + ( 𝑂 · ∫ 𝐴 ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) d 𝑠 ) ) ) |
100 |
22
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ ( ( - π [,] π ) ∖ { 0 } ) ) |
101 |
100
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ ( ( - π [,] π ) ∖ { 0 } ) ) |
102 |
|
eqid |
⊢ ( ( - π [,] π ) ∖ { 0 } ) = ( ( - π [,] π ) ∖ { 0 } ) |
103 |
1 2 44 55 24 10 11 12 13 14 102
|
fourierdlem66 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( ( - π [,] π ) ∖ { 0 } ) ) → ( 𝐺 ‘ 𝑠 ) = ( π · ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ) |
104 |
101 103
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑠 ) = ( π · ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ) |
105 |
104
|
itgeq2dv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ 𝐴 ( 𝐺 ‘ 𝑠 ) d 𝑠 = ∫ 𝐴 ( π · ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) d 𝑠 ) |
106 |
105
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫ 𝐴 ( 𝐺 ‘ 𝑠 ) d 𝑠 / π ) = ( ∫ 𝐴 ( π · ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) d 𝑠 / π ) ) |
107 |
83
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → π ∈ ℂ ) |
108 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝐹 : ℝ ⟶ ℝ ) |
109 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝑋 ∈ ℝ ) |
110 |
|
difss |
⊢ ( ( - π [,] π ) ∖ { 0 } ) ⊆ ( - π [,] π ) |
111 |
82
|
renegcli |
⊢ - π ∈ ℝ |
112 |
|
iccssre |
⊢ ( ( - π ∈ ℝ ∧ π ∈ ℝ ) → ( - π [,] π ) ⊆ ℝ ) |
113 |
111 82 112
|
mp2an |
⊢ ( - π [,] π ) ⊆ ℝ |
114 |
110 113
|
sstri |
⊢ ( ( - π [,] π ) ∖ { 0 } ) ⊆ ℝ |
115 |
114 100
|
sseldi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ ℝ ) |
116 |
109 115
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
117 |
108 116
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℝ ) |
118 |
44 55
|
ifcld |
⊢ ( 𝜑 → if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ∈ ℝ ) |
119 |
118
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ∈ ℝ ) |
120 |
117 119
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ∈ ℝ ) |
121 |
120
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) ∈ ℝ ) |
122 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → 𝑛 ∈ ℕ ) |
123 |
115
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ ℝ ) |
124 |
24
|
dirkerre |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ℝ ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℝ ) |
125 |
122 123 124
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℝ ) |
126 |
121 125
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ℝ ) |
127 |
104
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( π · ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) = ( 𝐺 ‘ 𝑠 ) ) |
128 |
127
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( π · ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) / π ) = ( ( 𝐺 ‘ 𝑠 ) / π ) ) |
129 |
|
picn |
⊢ π ∈ ℂ |
130 |
129
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → π ∈ ℂ ) |
131 |
126
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ℂ ) |
132 |
85
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → π ≠ 0 ) |
133 |
130 131 130 132
|
div23d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( π · ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) / π ) = ( ( π / π ) · ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ) |
134 |
60
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑠 ) ∈ ℂ ) |
135 |
134 130 132
|
divrec2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑠 ) / π ) = ( ( 1 / π ) · ( 𝐺 ‘ 𝑠 ) ) ) |
136 |
128 133 135
|
3eqtr3rd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( 1 / π ) · ( 𝐺 ‘ 𝑠 ) ) = ( ( π / π ) · ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ) |
137 |
129 85
|
dividi |
⊢ ( π / π ) = 1 |
138 |
137
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( π / π ) = 1 ) |
139 |
138
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( π / π ) · ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) = ( 1 · ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ) |
140 |
131
|
mulid2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( 1 · ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) = ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
141 |
136 139 140
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) = ( ( 1 / π ) · ( 𝐺 ‘ 𝑠 ) ) ) |
142 |
141
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ 𝐴 ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) = ( 𝑠 ∈ 𝐴 ↦ ( ( 1 / π ) · ( 𝐺 ‘ 𝑠 ) ) ) ) |
143 |
107 86
|
reccld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 / π ) ∈ ℂ ) |
144 |
143 60 80
|
iblmulc2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ 𝐴 ↦ ( ( 1 / π ) · ( 𝐺 ‘ 𝑠 ) ) ) ∈ 𝐿1 ) |
145 |
142 144
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ 𝐴 ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ∈ 𝐿1 ) |
146 |
107 126 145
|
itgmulc2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( π · ∫ 𝐴 ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) = ∫ 𝐴 ( π · ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) d 𝑠 ) |
147 |
146
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ 𝐴 ( π · ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) d 𝑠 = ( π · ∫ 𝐴 ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) ) |
148 |
147
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫ 𝐴 ( π · ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) d 𝑠 / π ) = ( ( π · ∫ 𝐴 ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) / π ) ) |
149 |
126 145
|
itgcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ 𝐴 ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ∈ ℂ ) |
150 |
149 107 86
|
divcan3d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( π · ∫ 𝐴 ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) / π ) = ∫ 𝐴 ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
151 |
106 148 150
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫ 𝐴 ( 𝐺 ‘ 𝑠 ) d 𝑠 / π ) = ∫ 𝐴 ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
152 |
90
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑂 ∈ ℂ ) |
153 |
113
|
sseli |
⊢ ( 𝑠 ∈ ( - π [,] π ) → 𝑠 ∈ ℝ ) |
154 |
153 124
|
sylan2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑠 ∈ ( - π [,] π ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℝ ) |
155 |
154
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ ( - π [,] π ) ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℝ ) |
156 |
111
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → - π ∈ ℝ ) |
157 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
158 |
157
|
a1i |
⊢ ( 𝑛 ∈ ℕ → ℝ ⊆ ℂ ) |
159 |
|
ssid |
⊢ ℂ ⊆ ℂ |
160 |
|
cncfss |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( - π [,] π ) –cn→ ℝ ) ⊆ ( ( - π [,] π ) –cn→ ℂ ) ) |
161 |
158 159 160
|
sylancl |
⊢ ( 𝑛 ∈ ℕ → ( ( - π [,] π ) –cn→ ℝ ) ⊆ ( ( - π [,] π ) –cn→ ℂ ) ) |
162 |
|
eqid |
⊢ ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) = ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) |
163 |
24
|
dirkerf |
⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
164 |
163
|
feqmptd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) = ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
165 |
24
|
dirkercncf |
⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) ∈ ( ℝ –cn→ ℝ ) ) |
166 |
164 165
|
eqeltrrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑠 ∈ ℝ ↦ ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ( ℝ –cn→ ℝ ) ) |
167 |
113
|
a1i |
⊢ ( 𝑛 ∈ ℕ → ( - π [,] π ) ⊆ ℝ ) |
168 |
|
ssid |
⊢ ℝ ⊆ ℝ |
169 |
168
|
a1i |
⊢ ( 𝑛 ∈ ℕ → ℝ ⊆ ℝ ) |
170 |
162 166 167 169 154
|
cncfmptssg |
⊢ ( 𝑛 ∈ ℕ → ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ( ( - π [,] π ) –cn→ ℝ ) ) |
171 |
161 170
|
sseldd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ( ( - π [,] π ) –cn→ ℂ ) ) |
172 |
171
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ( ( - π [,] π ) –cn→ ℂ ) ) |
173 |
|
cniccibl |
⊢ ( ( - π ∈ ℝ ∧ π ∈ ℝ ∧ ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ( ( - π [,] π ) –cn→ ℂ ) ) → ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ 𝐿1 ) |
174 |
156 83 172 173
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ ( - π [,] π ) ↦ ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ 𝐿1 ) |
175 |
30 61 155 174
|
iblss |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ 𝐿1 ) |
176 |
152 125 175
|
itgmulc2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑂 · ∫ 𝐴 ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) d 𝑠 ) = ∫ 𝐴 ( 𝑂 · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
177 |
151 176
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ∫ 𝐴 ( 𝐺 ‘ 𝑠 ) d 𝑠 / π ) + ( 𝑂 · ∫ 𝐴 ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) d 𝑠 ) ) = ( ∫ 𝐴 ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 + ∫ 𝐴 ( 𝑂 · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) ) |
178 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → 𝑂 ∈ ℝ ) |
179 |
178 125
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝑂 · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ℝ ) |
180 |
152 125 175
|
iblmulc2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑠 ∈ 𝐴 ↦ ( 𝑂 · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ∈ 𝐿1 ) |
181 |
126 145 179 180
|
itgadd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ 𝐴 ( ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) + ( 𝑂 · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) d 𝑠 = ( ∫ 𝐴 ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 + ∫ 𝐴 ( 𝑂 · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) ) |
182 |
26
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → 𝑂 = if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) |
183 |
182
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → 𝑂 = if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) |
184 |
183
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝑂 · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) = ( if ( 0 < 𝑠 , 𝑌 , 𝑊 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
185 |
184
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) + ( 𝑂 · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) = ( ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) + ( if ( 0 < 𝑠 , 𝑌 , 𝑊 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ) |
186 |
117
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
187 |
186
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
188 |
119
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐴 ) → if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ∈ ℂ ) |
189 |
188
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ∈ ℂ ) |
190 |
125
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ∈ ℂ ) |
191 |
187 189 190
|
subdird |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) = ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) − ( if ( 0 < 𝑠 , 𝑌 , 𝑊 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ) |
192 |
191
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) + ( if ( 0 < 𝑠 , 𝑌 , 𝑊 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) = ( ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) − ( if ( 0 < 𝑠 , 𝑌 , 𝑊 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) + ( if ( 0 < 𝑠 , 𝑌 , 𝑊 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) ) |
193 |
187 190
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ℂ ) |
194 |
189 190
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( if ( 0 < 𝑠 , 𝑌 , 𝑊 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ∈ ℂ ) |
195 |
193 194
|
npcand |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) − ( if ( 0 < 𝑠 , 𝑌 , 𝑊 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) + ( if ( 0 < 𝑠 , 𝑌 , 𝑊 ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
196 |
185 192 195
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) + ( 𝑂 · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) = ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) |
197 |
196
|
itgeq2dv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∫ 𝐴 ( ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) + ( 𝑂 · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) ) d 𝑠 = ∫ 𝐴 ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
198 |
181 197
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∫ 𝐴 ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − if ( 0 < 𝑠 , 𝑌 , 𝑊 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 + ∫ 𝐴 ( 𝑂 · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) = ∫ 𝐴 ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |
199 |
99 177 198
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐸 ‘ 𝑛 ) + ( 𝑂 / 2 ) ) = ∫ 𝐴 ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) · ( ( 𝐷 ‘ 𝑛 ) ‘ 𝑠 ) ) d 𝑠 ) |