Metamath Proof Explorer


Theorem fourierdlem95

Description: Algebraic manipulation of integrals, used by other lemmas. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem95.f φF:
fourierdlem95.xre φX
fourierdlem95.p P=mp0m|p0=-π+Xpm=π+Xi0..^mpi<pi+1
fourierdlem95.m φM
fourierdlem95.v φVPM
fourierdlem95.x φXranV
fourierdlem95.fcn φi0..^MFViVi+1:ViVi+1cn
fourierdlem95.r φi0..^MRFViVi+1limVi
fourierdlem95.l φi0..^MLFViVi+1limVi+1
fourierdlem95.h H=sππifs=00FX+sif0<sYWs
fourierdlem95.k K=sππifs=01s2sins2
fourierdlem95.u U=sππHsKs
fourierdlem95.s S=sππsinn+12s
fourierdlem95.g G=sππUsSs
fourierdlem95.i I=DF
fourierdlem95.ifn φi0..^MIViVi+1:ViVi+1
fourierdlem95.b φBI−∞XlimX
fourierdlem95.c φCIX+∞limX
fourierdlem95.y φYFX+∞limX
fourierdlem95.w φWF−∞XlimX
fourierdlem95.admvol φAdomvol
fourierdlem95.ass φAππ0
fourierlemenplusacver2eqitgdirker.e E=nAGsdsπ
fourierdlem95.d D=nsifsmod2π=02n+12πsinn+12s2πsins2
fourierdlem95.o φO
fourierdlem95.ifeqo φsAif0<sYW=O
fourierdlem95.itgdirker φnADnsds=12
Assertion fourierdlem95 φnEn+O2=AFX+sDnsds

Proof

Step Hyp Ref Expression
1 fourierdlem95.f φF:
2 fourierdlem95.xre φX
3 fourierdlem95.p P=mp0m|p0=-π+Xpm=π+Xi0..^mpi<pi+1
4 fourierdlem95.m φM
5 fourierdlem95.v φVPM
6 fourierdlem95.x φXranV
7 fourierdlem95.fcn φi0..^MFViVi+1:ViVi+1cn
8 fourierdlem95.r φi0..^MRFViVi+1limVi
9 fourierdlem95.l φi0..^MLFViVi+1limVi+1
10 fourierdlem95.h H=sππifs=00FX+sif0<sYWs
11 fourierdlem95.k K=sππifs=01s2sins2
12 fourierdlem95.u U=sππHsKs
13 fourierdlem95.s S=sππsinn+12s
14 fourierdlem95.g G=sππUsSs
15 fourierdlem95.i I=DF
16 fourierdlem95.ifn φi0..^MIViVi+1:ViVi+1
17 fourierdlem95.b φBI−∞XlimX
18 fourierdlem95.c φCIX+∞limX
19 fourierdlem95.y φYFX+∞limX
20 fourierdlem95.w φWF−∞XlimX
21 fourierdlem95.admvol φAdomvol
22 fourierdlem95.ass φAππ0
23 fourierlemenplusacver2eqitgdirker.e E=nAGsdsπ
24 fourierdlem95.d D=nsifsmod2π=02n+12πsinn+12s2πsins2
25 fourierdlem95.o φO
26 fourierdlem95.ifeqo φsAif0<sYW=O
27 fourierdlem95.itgdirker φnADnsds=12
28 simpr φnn
29 22 difss2d φAππ
30 29 adantr φnAππ
31 30 sselda φnsAsππ
32 1 adantr φnF:
33 2 adantr φnX
34 ioossre X+∞
35 34 a1i φX+∞
36 1 35 fssresd φFX+∞:X+∞
37 ioosscn X+∞
38 37 a1i φX+∞
39 eqid TopOpenfld=TopOpenfld
40 pnfxr +∞*
41 40 a1i φ+∞*
42 2 ltpnfd φX<+∞
43 39 41 2 42 lptioo1cn φXlimPtTopOpenfldX+∞
44 36 38 43 19 limcrecl φY
45 44 adantr φnY
46 ioossre −∞X
47 46 a1i φ−∞X
48 1 47 fssresd φF−∞X:−∞X
49 ioosscn −∞X
50 49 a1i φ−∞X
51 mnfxr −∞*
52 51 a1i φ−∞*
53 2 mnfltd φ−∞<X
54 39 52 2 53 lptioo2cn φXlimPtTopOpenfld−∞X
55 48 50 54 20 limcrecl φW
56 55 adantr φnW
57 28 nnred φnn
58 32 33 45 56 10 11 12 57 13 14 fourierdlem67 φnG:ππ
59 58 ffvelcdmda φnsππGs
60 31 59 syldan φnsAGs
61 21 adantr φnAdomvol
62 58 feqmptd φnG=sππGs
63 6 adantr φnXranV
64 19 adantr φnYFX+∞limX
65 20 adantr φnWF−∞XlimX
66 4 adantr φnM
67 5 adantr φnVPM
68 7 adantlr φni0..^MFViVi+1:ViVi+1cn
69 8 adantlr φni0..^MRFViVi+1limVi
70 9 adantlr φni0..^MLFViVi+1limVi+1
71 fveq2 j=iVj=Vi
72 71 oveq1d j=iVjX=ViX
73 72 cbvmptv j0MVjX=i0MViX
74 eqid mp0m|p0=πpm=πi0..^mpi<pi+1=mp0m|p0=πpm=πi0..^mpi<pi+1
75 16 adantlr φni0..^MIViVi+1:ViVi+1
76 17 adantr φnBI−∞XlimX
77 18 adantr φnCIX+∞limX
78 3 32 63 64 65 10 11 12 57 13 14 66 67 68 69 70 73 74 15 75 76 77 fourierdlem88 φnG𝐿1
79 62 78 eqeltrrd φnsππGs𝐿1
80 30 61 59 79 iblss φnsAGs𝐿1
81 60 80 itgrecl φnAGsds
82 pire π
83 82 a1i φnπ
84 pipos 0<π
85 82 84 gt0ne0ii π0
86 85 a1i φnπ0
87 81 83 86 redivcld φnAGsdsπ
88 23 fvmpt2 nAGsdsπEn=AGsdsπ
89 28 87 88 syl2anc φnEn=AGsdsπ
90 25 recnd φO
91 2cnd φ2
92 2ne0 20
93 92 a1i φ20
94 90 91 93 divrecd φO2=O12
95 94 adantr φnO2=O12
96 27 eqcomd φn12=ADnsds
97 96 oveq2d φnO12=OADnsds
98 95 97 eqtrd φnO2=OADnsds
99 89 98 oveq12d φnEn+O2=AGsdsπ+OADnsds
100 22 sselda φsAsππ0
101 100 adantlr φnsAsππ0
102 eqid ππ0=ππ0
103 1 2 44 55 24 10 11 12 13 14 102 fourierdlem66 φnsππ0Gs=πFX+sif0<sYWDns
104 101 103 syldan φnsAGs=πFX+sif0<sYWDns
105 104 itgeq2dv φnAGsds=AπFX+sif0<sYWDnsds
106 105 oveq1d φnAGsdsπ=AπFX+sif0<sYWDnsdsπ
107 83 recnd φnπ
108 1 adantr φsAF:
109 2 adantr φsAX
110 difss ππ0ππ
111 82 renegcli π
112 iccssre ππππ
113 111 82 112 mp2an ππ
114 110 113 sstri ππ0
115 114 100 sselid φsAs
116 109 115 readdcld φsAX+s
117 108 116 ffvelcdmd φsAFX+s
118 44 55 ifcld φif0<sYW
119 118 adantr φsAif0<sYW
120 117 119 resubcld φsAFX+sif0<sYW
121 120 adantlr φnsAFX+sif0<sYW
122 28 adantr φnsAn
123 115 adantlr φnsAs
124 24 dirkerre nsDns
125 122 123 124 syl2anc φnsADns
126 121 125 remulcld φnsAFX+sif0<sYWDns
127 104 eqcomd φnsAπFX+sif0<sYWDns=Gs
128 127 oveq1d φnsAπFX+sif0<sYWDnsπ=Gsπ
129 picn π
130 129 a1i φnsAπ
131 126 recnd φnsAFX+sif0<sYWDns
132 85 a1i φnsAπ0
133 130 131 130 132 div23d φnsAπFX+sif0<sYWDnsπ=ππFX+sif0<sYWDns
134 60 recnd φnsAGs
135 134 130 132 divrec2d φnsAGsπ=1πGs
136 128 133 135 3eqtr3rd φnsA1πGs=ππFX+sif0<sYWDns
137 129 85 dividi ππ=1
138 137 a1i φnsAππ=1
139 138 oveq1d φnsAππFX+sif0<sYWDns=1FX+sif0<sYWDns
140 131 mullidd φnsA1FX+sif0<sYWDns=FX+sif0<sYWDns
141 136 139 140 3eqtrrd φnsAFX+sif0<sYWDns=1πGs
142 141 mpteq2dva φnsAFX+sif0<sYWDns=sA1πGs
143 107 86 reccld φn1π
144 143 60 80 iblmulc2 φnsA1πGs𝐿1
145 142 144 eqeltrd φnsAFX+sif0<sYWDns𝐿1
146 107 126 145 itgmulc2 φnπAFX+sif0<sYWDnsds=AπFX+sif0<sYWDnsds
147 146 eqcomd φnAπFX+sif0<sYWDnsds=πAFX+sif0<sYWDnsds
148 147 oveq1d φnAπFX+sif0<sYWDnsdsπ=πAFX+sif0<sYWDnsdsπ
149 126 145 itgcl φnAFX+sif0<sYWDnsds
150 149 107 86 divcan3d φnπAFX+sif0<sYWDnsdsπ=AFX+sif0<sYWDnsds
151 106 148 150 3eqtrd φnAGsdsπ=AFX+sif0<sYWDnsds
152 90 adantr φnO
153 113 sseli sππs
154 153 124 sylan2 nsππDns
155 154 adantll φnsππDns
156 111 a1i φnπ
157 ax-resscn
158 157 a1i n
159 ssid
160 cncfss ππcnππcn
161 158 159 160 sylancl nππcnππcn
162 eqid sDns=sDns
163 24 dirkerf nDn:
164 163 feqmptd nDn=sDns
165 24 dirkercncf nDn:cn
166 164 165 eqeltrrd nsDns:cn
167 113 a1i nππ
168 ssid
169 168 a1i n
170 162 166 167 169 154 cncfmptssg nsππDns:ππcn
171 161 170 sseldd nsππDns:ππcn
172 171 adantl φnsππDns:ππcn
173 cniccibl ππsππDns:ππcnsππDns𝐿1
174 156 83 172 173 syl3anc φnsππDns𝐿1
175 30 61 155 174 iblss φnsADns𝐿1
176 152 125 175 itgmulc2 φnOADnsds=AODnsds
177 151 176 oveq12d φnAGsdsπ+OADnsds=AFX+sif0<sYWDnsds+AODnsds
178 25 ad2antrr φnsAO
179 178 125 remulcld φnsAODns
180 152 125 175 iblmulc2 φnsAODns𝐿1
181 126 145 179 180 itgadd φnAFX+sif0<sYWDns+ODnsds=AFX+sif0<sYWDnsds+AODnsds
182 26 eqcomd φsAO=if0<sYW
183 182 adantlr φnsAO=if0<sYW
184 183 oveq1d φnsAODns=if0<sYWDns
185 184 oveq2d φnsAFX+sif0<sYWDns+ODns=FX+sif0<sYWDns+if0<sYWDns
186 117 recnd φsAFX+s
187 186 adantlr φnsAFX+s
188 119 recnd φsAif0<sYW
189 188 adantlr φnsAif0<sYW
190 125 recnd φnsADns
191 187 189 190 subdird φnsAFX+sif0<sYWDns=FX+sDnsif0<sYWDns
192 191 oveq1d φnsAFX+sif0<sYWDns+if0<sYWDns=FX+sDns-if0<sYWDns+if0<sYWDns
193 187 190 mulcld φnsAFX+sDns
194 189 190 mulcld φnsAif0<sYWDns
195 193 194 npcand φnsAFX+sDns-if0<sYWDns+if0<sYWDns=FX+sDns
196 185 192 195 3eqtrd φnsAFX+sif0<sYWDns+ODns=FX+sDns
197 196 itgeq2dv φnAFX+sif0<sYWDns+ODnsds=AFX+sDnsds
198 181 197 eqtr3d φnAFX+sif0<sYWDnsds+AODnsds=AFX+sDnsds
199 99 177 198 3eqtrd φnEn+O2=AFX+sDnsds