Metamath Proof Explorer


Theorem fourierdlem88

Description: Given a piecewise continuous function F , a continuous function K and a continuous function S , the function G is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem88.1 P=mp0m|p0=-π+Xpm=π+Xi0..^mpi<pi+1
fourierdlem88.f φF:
fourierdlem88.x φXranV
fourierdlem88.y φYFX+∞limX
fourierdlem88.w φWF−∞XlimX
fourierdlem88.h H=sππifs=00FX+sif0<sYWs
fourierdlem88.k K=sππifs=01s2sins2
fourierdlem88.u U=sππHsKs
fourierdlem88.n φN
fourierdlem88.s S=sππsinN+12s
fourierdlem88.g G=sππUsSs
fourierdlem88.m φM
fourierdlem88.v φVPM
fourierdlem88.fcn φi0..^MFViVi+1:ViVi+1cn
fourierdlem88.r φi0..^MRFViVi+1limVi
fourierdlem88.l φi0..^MLFViVi+1limVi+1
fourierdlem88.q Q=i0MViX
fourierdlem88.o O=mp0m|p0=πpm=πi0..^mpi<pi+1
fourierdlem88.i I=DF
fourierdlem88.ifn φi0..^MIViVi+1:ViVi+1
fourierdlem88.c φCI−∞XlimX
fourierdlem88.d φDIX+∞limX
Assertion fourierdlem88 φG𝐿1

Proof

Step Hyp Ref Expression
1 fourierdlem88.1 P=mp0m|p0=-π+Xpm=π+Xi0..^mpi<pi+1
2 fourierdlem88.f φF:
3 fourierdlem88.x φXranV
4 fourierdlem88.y φYFX+∞limX
5 fourierdlem88.w φWF−∞XlimX
6 fourierdlem88.h H=sππifs=00FX+sif0<sYWs
7 fourierdlem88.k K=sππifs=01s2sins2
8 fourierdlem88.u U=sππHsKs
9 fourierdlem88.n φN
10 fourierdlem88.s S=sππsinN+12s
11 fourierdlem88.g G=sππUsSs
12 fourierdlem88.m φM
13 fourierdlem88.v φVPM
14 fourierdlem88.fcn φi0..^MFViVi+1:ViVi+1cn
15 fourierdlem88.r φi0..^MRFViVi+1limVi
16 fourierdlem88.l φi0..^MLFViVi+1limVi+1
17 fourierdlem88.q Q=i0MViX
18 fourierdlem88.o O=mp0m|p0=πpm=πi0..^mpi<pi+1
19 fourierdlem88.i I=DF
20 fourierdlem88.ifn φi0..^MIViVi+1:ViVi+1
21 fourierdlem88.c φCI−∞XlimX
22 fourierdlem88.d φDIX+∞limX
23 pire π
24 23 a1i φπ
25 24 renegcld φπ
26 1 fourierdlem2 MVPMV0MV0=-π+XVM=π+Xi0..^MVi<Vi+1
27 12 26 syl φVPMV0MV0=-π+XVM=π+Xi0..^MVi<Vi+1
28 13 27 mpbid φV0MV0=-π+XVM=π+Xi0..^MVi<Vi+1
29 28 simpld φV0M
30 elmapi V0MV:0M
31 frn V:0MranV
32 29 30 31 3syl φranV
33 32 3 sseldd φX
34 25 24 33 1 18 12 13 17 fourierdlem14 φQOM
35 ioossre X+∞
36 35 a1i φX+∞
37 2 36 fssresd φFX+∞:X+∞
38 ax-resscn
39 36 38 sstrdi φX+∞
40 eqid TopOpenfld=TopOpenfld
41 pnfxr +∞*
42 41 a1i φ+∞*
43 33 ltpnfd φX<+∞
44 40 42 33 43 lptioo1cn φXlimPtTopOpenfldX+∞
45 37 39 44 4 limcrecl φY
46 ioossre −∞X
47 46 a1i φ−∞X
48 2 47 fssresd φF−∞X:−∞X
49 47 38 sstrdi φ−∞X
50 mnfxr −∞*
51 50 a1i φ−∞*
52 33 mnfltd φ−∞<X
53 40 51 33 52 lptioo2cn φXlimPtTopOpenfld−∞X
54 48 49 53 5 limcrecl φW
55 2 33 45 54 6 7 8 fourierdlem55 φU:ππ
56 55 ffvelcdmda φsππUs
57 10 fourierdlem5 NS:ππ
58 9 57 syl φS:ππ
59 58 ffvelcdmda φsππSs
60 56 59 remulcld φsππUsSs
61 60 recnd φsππUsSs
62 61 11 fmptd φG:ππ
63 ssid
64 cncfss QiQi+1cnQiQi+1cn
65 38 63 64 mp2an QiQi+1cnQiQi+1cn
66 2 adantr φi0..^MF:
67 18 12 34 fourierdlem15 φQ:0Mππ
68 67 adantr φi0..^MQ:0Mππ
69 elfzofz i0..^Mi0M
70 69 adantl φi0..^Mi0M
71 68 70 ffvelcdmd φi0..^MQiππ
72 fzofzp1 i0..^Mi+10M
73 72 adantl φi0..^Mi+10M
74 68 73 ffvelcdmd φi0..^MQi+1ππ
75 33 adantr φi0..^MX
76 1 12 13 3 fourierdlem12 φi0..^M¬XViVi+1
77 75 recnd φi0..^MX
78 77 addlidd φi0..^M0+X=X
79 23 a1i φi0..^Mπ
80 79 renegcld φi0..^Mπ
81 80 75 readdcld φi0..^M-π+X
82 79 75 readdcld φi0..^Mπ+X
83 81 82 iccssred φi0..^M-π+Xπ+X
84 1 12 13 fourierdlem15 φV:0M-π+Xπ+X
85 84 adantr φi0..^MV:0M-π+Xπ+X
86 85 70 ffvelcdmd φi0..^MVi-π+Xπ+X
87 83 86 sseldd φi0..^MVi
88 87 75 resubcld φi0..^MViX
89 17 fvmpt2 i0MViXQi=ViX
90 70 88 89 syl2anc φi0..^MQi=ViX
91 90 oveq1d φi0..^MQi+X=Vi-X+X
92 87 recnd φi0..^MVi
93 92 77 npcand φi0..^MVi-X+X=Vi
94 91 93 eqtrd φi0..^MQi+X=Vi
95 fveq2 i=jVi=Vj
96 95 oveq1d i=jViX=VjX
97 96 cbvmptv i0MViX=j0MVjX
98 17 97 eqtri Q=j0MVjX
99 98 a1i φi0..^MQ=j0MVjX
100 simpr φi0..^Mj=i+1j=i+1
101 100 fveq2d φi0..^Mj=i+1Vj=Vi+1
102 101 oveq1d φi0..^Mj=i+1VjX=Vi+1X
103 85 73 ffvelcdmd φi0..^MVi+1-π+Xπ+X
104 83 103 sseldd φi0..^MVi+1
105 104 75 resubcld φi0..^MVi+1X
106 99 102 73 105 fvmptd φi0..^MQi+1=Vi+1X
107 106 oveq1d φi0..^MQi+1+X=Vi+1-X+X
108 104 recnd φi0..^MVi+1
109 108 77 npcand φi0..^MVi+1-X+X=Vi+1
110 107 109 eqtrd φi0..^MQi+1+X=Vi+1
111 94 110 oveq12d φi0..^MQi+XQi+1+X=ViVi+1
112 78 111 eleq12d φi0..^M0+XQi+XQi+1+XXViVi+1
113 76 112 mtbird φi0..^M¬0+XQi+XQi+1+X
114 0red φi0..^M0
115 90 88 eqeltrd φi0..^MQi
116 106 105 eqeltrd φi0..^MQi+1
117 114 115 116 75 eliooshift φi0..^M0QiQi+10+XQi+XQi+1+X
118 113 117 mtbird φi0..^M¬0QiQi+1
119 111 reseq2d φi0..^MFQi+XQi+1+X=FViVi+1
120 111 oveq1d φi0..^MQi+XQi+1+Xcn=ViVi+1cn
121 14 119 120 3eltr4d φi0..^MFQi+XQi+1+X:Qi+XQi+1+Xcn
122 45 adantr φi0..^MY
123 54 adantr φi0..^MW
124 9 adantr φi0..^MN
125 66 71 74 75 118 121 122 123 6 7 8 124 10 11 fourierdlem78 φi0..^MGQiQi+1:QiQi+1cn
126 65 125 sselid φi0..^MGQiQi+1:QiQi+1cn
127 eqid sQiQi+1Us=sQiQi+1Us
128 eqid sQiQi+1Ss=sQiQi+1Ss
129 eqid sQiQi+1UsSs=sQiQi+1UsSs
130 23 renegcli π
131 130 rexri π*
132 131 a1i φi0..^MsQiQi+1π*
133 23 rexri π*
134 133 a1i φi0..^MsQiQi+1π*
135 68 adantr φi0..^MsQiQi+1Q:0Mππ
136 simplr φi0..^MsQiQi+1i0..^M
137 132 134 135 136 fourierdlem8 φi0..^MsQiQi+1QiQi+1ππ
138 ioossicc QiQi+1QiQi+1
139 138 sseli sQiQi+1sQiQi+1
140 139 adantl φi0..^MsQiQi+1sQiQi+1
141 137 140 sseldd φi0..^MsQiQi+1sππ
142 2 33 45 54 6 fourierdlem9 φH:ππ
143 142 ad2antrr φi0..^MsQiQi+1H:ππ
144 143 141 ffvelcdmd φi0..^MsQiQi+1Hs
145 7 fourierdlem43 K:ππ
146 145 a1i φi0..^MsQiQi+1K:ππ
147 146 141 ffvelcdmd φi0..^MsQiQi+1Ks
148 144 147 remulcld φi0..^MsQiQi+1HsKs
149 8 fvmpt2 sππHsKsUs=HsKs
150 141 148 149 syl2anc φi0..^MsQiQi+1Us=HsKs
151 150 148 eqeltrd φi0..^MsQiQi+1Us
152 151 recnd φi0..^MsQiQi+1Us
153 9 10 fourierdlem18 φS:ππcn
154 cncff S:ππcnS:ππ
155 153 154 syl φS:ππ
156 155 adantr φi0..^MS:ππ
157 156 adantr φi0..^MsQiQi+1S:ππ
158 157 141 ffvelcdmd φi0..^MsQiQi+1Ss
159 158 recnd φi0..^MsQiQi+1Ss
160 eqid sQiQi+1Hs=sQiQi+1Hs
161 eqid sQiQi+1Ks=sQiQi+1Ks
162 eqid sQiQi+1HsKs=sQiQi+1HsKs
163 144 recnd φi0..^MsQiQi+1Hs
164 147 recnd φi0..^MsQiQi+1Ks
165 38 a1i φi0..^M
166 20 165 fssd φi0..^MIViVi+1:ViVi+1
167 eqid ifVi=XDRifVi<XWYQi=ifVi=XDRifVi<XWYQi
168 33 1 2 3 4 54 6 12 13 15 17 18 19 166 22 167 fourierdlem75 φi0..^MifVi=XDRifVi<XWYQiHQiQi+1limQi
169 142 adantr φi0..^MH:ππ
170 131 a1i φi0..^Mπ*
171 133 a1i φi0..^Mπ*
172 simpr φi0..^Mi0..^M
173 170 171 68 172 fourierdlem8 φi0..^MQiQi+1ππ
174 138 173 sstrid φi0..^MQiQi+1ππ
175 169 174 feqresmpt φi0..^MHQiQi+1=sQiQi+1Hs
176 175 oveq1d φi0..^MHQiQi+1limQi=sQiQi+1HslimQi
177 168 176 eleqtrd φi0..^MifVi=XDRifVi<XWYQisQiQi+1HslimQi
178 limcresi KlimQiKQiQi+1limQi
179 7 fourierdlem62 K:ππcn
180 179 a1i φi0..^MK:ππcn
181 180 71 cnlimci φi0..^MKQiKlimQi
182 178 181 sselid φi0..^MKQiKQiQi+1limQi
183 145 a1i φi0..^MK:ππ
184 183 174 feqresmpt φi0..^MKQiQi+1=sQiQi+1Ks
185 184 oveq1d φi0..^MKQiQi+1limQi=sQiQi+1KslimQi
186 182 185 eleqtrd φi0..^MKQisQiQi+1KslimQi
187 160 161 162 163 164 177 186 mullimc φi0..^MifVi=XDRifVi<XWYQiKQisQiQi+1HsKslimQi
188 150 eqcomd φi0..^MsQiQi+1HsKs=Us
189 188 mpteq2dva φi0..^MsQiQi+1HsKs=sQiQi+1Us
190 189 oveq1d φi0..^MsQiQi+1HsKslimQi=sQiQi+1UslimQi
191 187 190 eleqtrd φi0..^MifVi=XDRifVi<XWYQiKQisQiQi+1UslimQi
192 limcresi SlimQiSQiQi+1limQi
193 153 adantr φi0..^MS:ππcn
194 193 71 cnlimci φi0..^MSQiSlimQi
195 192 194 sselid φi0..^MSQiSQiQi+1limQi
196 156 174 feqresmpt φi0..^MSQiQi+1=sQiQi+1Ss
197 196 oveq1d φi0..^MSQiQi+1limQi=sQiQi+1SslimQi
198 195 197 eleqtrd φi0..^MSQisQiQi+1SslimQi
199 127 128 129 152 159 191 198 mullimc φi0..^MifVi=XDRifVi<XWYQiKQiSQisQiQi+1UsSslimQi
200 60 11 fmptd φG:ππ
201 200 adantr φi0..^MG:ππ
202 201 174 feqresmpt φi0..^MGQiQi+1=sQiQi+1Gs
203 151 158 remulcld φi0..^MsQiQi+1UsSs
204 11 fvmpt2 sππUsSsGs=UsSs
205 141 203 204 syl2anc φi0..^MsQiQi+1Gs=UsSs
206 205 mpteq2dva φi0..^MsQiQi+1Gs=sQiQi+1UsSs
207 202 206 eqtr2d φi0..^MsQiQi+1UsSs=GQiQi+1
208 207 oveq1d φi0..^MsQiQi+1UsSslimQi=GQiQi+1limQi
209 199 208 eleqtrd φi0..^MifVi=XDRifVi<XWYQiKQiSQiGQiQi+1limQi
210 eqid ifVi+1=XCLifVi+1<XWYQi+1=ifVi+1=XCLifVi+1<XWYQi+1
211 33 1 2 3 45 5 6 12 13 16 17 18 19 20 21 210 fourierdlem74 φi0..^MifVi+1=XCLifVi+1<XWYQi+1HQiQi+1limQi+1
212 175 oveq1d φi0..^MHQiQi+1limQi+1=sQiQi+1HslimQi+1
213 211 212 eleqtrd φi0..^MifVi+1=XCLifVi+1<XWYQi+1sQiQi+1HslimQi+1
214 limcresi KlimQi+1KQiQi+1limQi+1
215 180 74 cnlimci φi0..^MKQi+1KlimQi+1
216 214 215 sselid φi0..^MKQi+1KQiQi+1limQi+1
217 184 oveq1d φi0..^MKQiQi+1limQi+1=sQiQi+1KslimQi+1
218 216 217 eleqtrd φi0..^MKQi+1sQiQi+1KslimQi+1
219 160 161 162 163 164 213 218 mullimc φi0..^MifVi+1=XCLifVi+1<XWYQi+1KQi+1sQiQi+1HsKslimQi+1
220 189 oveq1d φi0..^MsQiQi+1HsKslimQi+1=sQiQi+1UslimQi+1
221 219 220 eleqtrd φi0..^MifVi+1=XCLifVi+1<XWYQi+1KQi+1sQiQi+1UslimQi+1
222 limcresi SlimQi+1SQiQi+1limQi+1
223 193 74 cnlimci φi0..^MSQi+1SlimQi+1
224 222 223 sselid φi0..^MSQi+1SQiQi+1limQi+1
225 196 oveq1d φi0..^MSQiQi+1limQi+1=sQiQi+1SslimQi+1
226 224 225 eleqtrd φi0..^MSQi+1sQiQi+1SslimQi+1
227 127 128 129 152 159 221 226 mullimc φi0..^MifVi+1=XCLifVi+1<XWYQi+1KQi+1SQi+1sQiQi+1UsSslimQi+1
228 207 oveq1d φi0..^MsQiQi+1UsSslimQi+1=GQiQi+1limQi+1
229 227 228 eleqtrd φi0..^MifVi+1=XCLifVi+1<XWYQi+1KQi+1SQi+1GQiQi+1limQi+1
230 18 12 34 62 126 209 229 fourierdlem69 φG𝐿1