Metamath Proof Explorer


Theorem fourierdlem74

Description: Given a piecewise smooth function F , the derived function H has a limit at the upper bound of each interval of the partition Q . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem74.xre φ X
fourierdlem74.p P = m p 0 m | p 0 = - π + X p m = π + X i 0 ..^ m p i < p i + 1
fourierdlem74.f φ F :
fourierdlem74.x φ X ran V
fourierdlem74.y φ Y
fourierdlem74.w φ W F −∞ X lim X
fourierdlem74.h H = s π π if s = 0 0 F X + s if 0 < s Y W s
fourierdlem74.m φ M
fourierdlem74.v φ V P M
fourierdlem74.r φ i 0 ..^ M R F V i V i + 1 lim V i + 1
fourierdlem74.q Q = i 0 M V i X
fourierdlem74.o O = m p 0 m | p 0 = π p m = π i 0 ..^ m p i < p i + 1
fourierdlem74.g G = D F
fourierdlem74.gcn φ i 0 ..^ M G V i V i + 1 : V i V i + 1
fourierdlem74.e φ E G −∞ X lim X
fourierdlem74.a A = if V i + 1 = X E R if V i + 1 < X W Y Q i + 1
Assertion fourierdlem74 φ i 0 ..^ M A H Q i Q i + 1 lim Q i + 1

Proof

Step Hyp Ref Expression
1 fourierdlem74.xre φ X
2 fourierdlem74.p P = m p 0 m | p 0 = - π + X p m = π + X i 0 ..^ m p i < p i + 1
3 fourierdlem74.f φ F :
4 fourierdlem74.x φ X ran V
5 fourierdlem74.y φ Y
6 fourierdlem74.w φ W F −∞ X lim X
7 fourierdlem74.h H = s π π if s = 0 0 F X + s if 0 < s Y W s
8 fourierdlem74.m φ M
9 fourierdlem74.v φ V P M
10 fourierdlem74.r φ i 0 ..^ M R F V i V i + 1 lim V i + 1
11 fourierdlem74.q Q = i 0 M V i X
12 fourierdlem74.o O = m p 0 m | p 0 = π p m = π i 0 ..^ m p i < p i + 1
13 fourierdlem74.g G = D F
14 fourierdlem74.gcn φ i 0 ..^ M G V i V i + 1 : V i V i + 1
15 fourierdlem74.e φ E G −∞ X lim X
16 fourierdlem74.a A = if V i + 1 = X E R if V i + 1 < X W Y Q i + 1
17 elfzofz i 0 ..^ M i 0 M
18 pire π
19 18 renegcli π
20 19 a1i φ π
21 20 1 readdcld φ - π + X
22 18 a1i φ π
23 22 1 readdcld φ π + X
24 21 23 iccssred φ - π + X π + X
25 24 adantr φ i 0 M - π + X π + X
26 2 8 9 fourierdlem15 φ V : 0 M - π + X π + X
27 26 ffvelrnda φ i 0 M V i - π + X π + X
28 25 27 sseldd φ i 0 M V i
29 17 28 sylan2 φ i 0 ..^ M V i
30 29 adantr φ i 0 ..^ M V i + 1 = X V i
31 1 ad2antrr φ i 0 ..^ M V i + 1 = X X
32 2 fourierdlem2 M V P M V 0 M V 0 = - π + X V M = π + X i 0 ..^ M V i < V i + 1
33 8 32 syl φ V P M V 0 M V 0 = - π + X V M = π + X i 0 ..^ M V i < V i + 1
34 9 33 mpbid φ V 0 M V 0 = - π + X V M = π + X i 0 ..^ M V i < V i + 1
35 34 simprrd φ i 0 ..^ M V i < V i + 1
36 35 r19.21bi φ i 0 ..^ M V i < V i + 1
37 36 adantr φ i 0 ..^ M V i + 1 = X V i < V i + 1
38 eqcom V i + 1 = X X = V i + 1
39 38 biimpi V i + 1 = X X = V i + 1
40 39 adantl φ i 0 ..^ M V i + 1 = X X = V i + 1
41 37 40 breqtrrd φ i 0 ..^ M V i + 1 = X V i < X
42 ioossre V i X
43 42 a1i φ V i X
44 3 43 fssresd φ F V i X : V i X
45 44 ad2antrr φ i 0 ..^ M V i + 1 = X F V i X : V i X
46 limcresi F −∞ X lim X F −∞ X V i X lim X
47 46 6 sselid φ W F −∞ X V i X lim X
48 47 adantr φ i 0 ..^ M W F −∞ X V i X lim X
49 mnfxr −∞ *
50 49 a1i φ i 0 ..^ M −∞ *
51 29 rexrd φ i 0 ..^ M V i *
52 29 mnfltd φ i 0 ..^ M −∞ < V i
53 50 51 52 xrltled φ i 0 ..^ M −∞ V i
54 iooss1 −∞ * −∞ V i V i X −∞ X
55 50 53 54 syl2anc φ i 0 ..^ M V i X −∞ X
56 55 resabs1d φ i 0 ..^ M F −∞ X V i X = F V i X
57 56 oveq1d φ i 0 ..^ M F −∞ X V i X lim X = F V i X lim X
58 48 57 eleqtrd φ i 0 ..^ M W F V i X lim X
59 58 adantr φ i 0 ..^ M V i + 1 = X W F V i X lim X
60 eqid D F V i X = D F V i X
61 ax-resscn
62 61 a1i φ
63 3 62 fssd φ F :
64 ssid
65 64 a1i φ
66 eqid TopOpen fld = TopOpen fld
67 66 tgioo2 topGen ran . = TopOpen fld 𝑡
68 66 67 dvres F : V i X D F V i X = F int topGen ran . V i X
69 62 63 65 43 68 syl22anc φ D F V i X = F int topGen ran . V i X
70 13 eqcomi D F = G
71 ioontr int topGen ran . V i X = V i X
72 70 71 reseq12i F int topGen ran . V i X = G V i X
73 72 a1i φ F int topGen ran . V i X = G V i X
74 69 73 eqtrd φ D F V i X = G V i X
75 74 dmeqd φ dom F V i X = dom G V i X
76 75 ad2antrr φ i 0 ..^ M V i + 1 = X dom F V i X = dom G V i X
77 14 adantr φ i 0 ..^ M V i + 1 = X G V i V i + 1 : V i V i + 1
78 oveq2 V i + 1 = X V i V i + 1 = V i X
79 78 reseq2d V i + 1 = X G V i V i + 1 = G V i X
80 79 78 feq12d V i + 1 = X G V i V i + 1 : V i V i + 1 G V i X : V i X
81 80 adantl φ i 0 ..^ M V i + 1 = X G V i V i + 1 : V i V i + 1 G V i X : V i X
82 77 81 mpbid φ i 0 ..^ M V i + 1 = X G V i X : V i X
83 fdm G V i X : V i X dom G V i X = V i X
84 82 83 syl φ i 0 ..^ M V i + 1 = X dom G V i X = V i X
85 76 84 eqtrd φ i 0 ..^ M V i + 1 = X dom F V i X = V i X
86 limcresi G −∞ X lim X G −∞ X V i X lim X
87 55 resabs1d φ i 0 ..^ M G −∞ X V i X = G V i X
88 87 oveq1d φ i 0 ..^ M G −∞ X V i X lim X = G V i X lim X
89 86 88 sseqtrid φ i 0 ..^ M G −∞ X lim X G V i X lim X
90 15 adantr φ i 0 ..^ M E G −∞ X lim X
91 89 90 sseldd φ i 0 ..^ M E G V i X lim X
92 69 73 eqtr2d φ G V i X = D F V i X
93 92 oveq1d φ G V i X lim X = F V i X lim X
94 93 adantr φ i 0 ..^ M G V i X lim X = F V i X lim X
95 91 94 eleqtrd φ i 0 ..^ M E F V i X lim X
96 95 adantr φ i 0 ..^ M V i + 1 = X E F V i X lim X
97 eqid s V i X 0 F V i X X + s W s = s V i X 0 F V i X X + s W s
98 oveq2 x = s X + x = X + s
99 98 fveq2d x = s F V i X X + x = F V i X X + s
100 99 oveq1d x = s F V i X X + x W = F V i X X + s W
101 100 cbvmptv x V i X 0 F V i X X + x W = s V i X 0 F V i X X + s W
102 id x = s x = s
103 102 cbvmptv x V i X 0 x = s V i X 0 s
104 30 31 41 45 59 60 85 96 97 101 103 fourierdlem60 φ i 0 ..^ M V i + 1 = X E s V i X 0 F V i X X + s W s lim 0
105 iftrue V i + 1 = X if V i + 1 = X E R if V i + 1 < X W Y Q i + 1 = E
106 16 105 eqtrid V i + 1 = X A = E
107 106 adantl φ i 0 ..^ M V i + 1 = X A = E
108 7 reseq1i H Q i Q i + 1 = s π π if s = 0 0 F X + s if 0 < s Y W s Q i Q i + 1
109 108 a1i φ i 0 ..^ M V i + 1 = X H Q i Q i + 1 = s π π if s = 0 0 F X + s if 0 < s Y W s Q i Q i + 1
110 ioossicc Q i Q i + 1 Q i Q i + 1
111 19 rexri π *
112 111 a1i φ i 0 ..^ M π *
113 18 rexri π *
114 113 a1i φ i 0 ..^ M π *
115 19 a1i φ i 0 M π
116 18 a1i φ i 0 M π
117 1 adantr φ i 0 M X
118 28 117 resubcld φ i 0 M V i X
119 20 recnd φ π
120 1 recnd φ X
121 119 120 pncand φ π + X - X = π
122 121 eqcomd φ π = π + X - X
123 122 adantr φ i 0 M π = π + X - X
124 21 adantr φ i 0 M - π + X
125 23 adantr φ i 0 M π + X
126 elicc2 - π + X π + X V i - π + X π + X V i - π + X V i V i π + X
127 124 125 126 syl2anc φ i 0 M V i - π + X π + X V i - π + X V i V i π + X
128 27 127 mpbid φ i 0 M V i - π + X V i V i π + X
129 128 simp2d φ i 0 M - π + X V i
130 124 28 117 129 lesub1dd φ i 0 M π + X - X V i X
131 123 130 eqbrtrd φ i 0 M π V i X
132 128 simp3d φ i 0 M V i π + X
133 28 125 117 132 lesub1dd φ i 0 M V i X π + X - X
134 116 recnd φ i 0 M π
135 120 adantr φ i 0 M X
136 134 135 pncand φ i 0 M π + X - X = π
137 133 136 breqtrd φ i 0 M V i X π
138 115 116 118 131 137 eliccd φ i 0 M V i X π π
139 138 11 fmptd φ Q : 0 M π π
140 139 adantr φ i 0 ..^ M Q : 0 M π π
141 simpr φ i 0 ..^ M i 0 ..^ M
142 112 114 140 141 fourierdlem8 φ i 0 ..^ M Q i Q i + 1 π π
143 110 142 sstrid φ i 0 ..^ M Q i Q i + 1 π π
144 143 resmptd φ i 0 ..^ M s π π if s = 0 0 F X + s if 0 < s Y W s Q i Q i + 1 = s Q i Q i + 1 if s = 0 0 F X + s if 0 < s Y W s
145 144 adantr φ i 0 ..^ M V i + 1 = X s π π if s = 0 0 F X + s if 0 < s Y W s Q i Q i + 1 = s Q i Q i + 1 if s = 0 0 F X + s if 0 < s Y W s
146 17 adantl φ i 0 ..^ M i 0 M
147 17 118 sylan2 φ i 0 ..^ M V i X
148 11 fvmpt2 i 0 M V i X Q i = V i X
149 146 147 148 syl2anc φ i 0 ..^ M Q i = V i X
150 149 adantr φ i 0 ..^ M V i + 1 = X Q i = V i X
151 fveq2 i = j V i = V j
152 151 oveq1d i = j V i X = V j X
153 152 cbvmptv i 0 M V i X = j 0 M V j X
154 11 153 eqtri Q = j 0 M V j X
155 154 a1i φ i 0 ..^ M Q = j 0 M V j X
156 fveq2 j = i + 1 V j = V i + 1
157 156 oveq1d j = i + 1 V j X = V i + 1 X
158 157 adantl φ i 0 ..^ M j = i + 1 V j X = V i + 1 X
159 fzofzp1 i 0 ..^ M i + 1 0 M
160 159 adantl φ i 0 ..^ M i + 1 0 M
161 34 simpld φ V 0 M
162 elmapi V 0 M V : 0 M
163 161 162 syl φ V : 0 M
164 163 adantr φ i 0 ..^ M V : 0 M
165 164 160 ffvelrnd φ i 0 ..^ M V i + 1
166 1 adantr φ i 0 ..^ M X
167 165 166 resubcld φ i 0 ..^ M V i + 1 X
168 155 158 160 167 fvmptd φ i 0 ..^ M Q i + 1 = V i + 1 X
169 168 adantr φ i 0 ..^ M V i + 1 = X Q i + 1 = V i + 1 X
170 oveq1 V i + 1 = X V i + 1 X = X X
171 170 adantl φ i 0 ..^ M V i + 1 = X V i + 1 X = X X
172 120 ad2antrr φ i 0 M V i + 1 = X X
173 172 subidd φ i 0 M V i + 1 = X X X = 0
174 17 173 sylanl2 φ i 0 ..^ M V i + 1 = X X X = 0
175 169 171 174 3eqtrd φ i 0 ..^ M V i + 1 = X Q i + 1 = 0
176 150 175 oveq12d φ i 0 ..^ M V i + 1 = X Q i Q i + 1 = V i X 0
177 simplr φ i 0 ..^ M s Q i Q i + 1 s = 0 s Q i Q i + 1
178 8 adantr φ s = 0 M
179 20 22 1 2 12 8 9 11 fourierdlem14 φ Q O M
180 179 adantr φ s = 0 Q O M
181 simpr φ s = 0 s = 0
182 ffn V : 0 M - π + X π + X V Fn 0 M
183 fvelrnb V Fn 0 M X ran V i 0 M V i = X
184 26 182 183 3syl φ X ran V i 0 M V i = X
185 4 184 mpbid φ i 0 M V i = X
186 simpr φ i 0 M i 0 M
187 11 fvmpt2 i 0 M V i X π π Q i = V i X
188 186 138 187 syl2anc φ i 0 M Q i = V i X
189 188 adantr φ i 0 M V i = X Q i = V i X
190 oveq1 V i = X V i X = X X
191 190 adantl φ i 0 M V i = X V i X = X X
192 120 subidd φ X X = 0
193 192 ad2antrr φ i 0 M V i = X X X = 0
194 189 191 193 3eqtrd φ i 0 M V i = X Q i = 0
195 194 ex φ i 0 M V i = X Q i = 0
196 195 reximdva φ i 0 M V i = X i 0 M Q i = 0
197 185 196 mpd φ i 0 M Q i = 0
198 118 11 fmptd φ Q : 0 M
199 ffn Q : 0 M Q Fn 0 M
200 fvelrnb Q Fn 0 M 0 ran Q i 0 M Q i = 0
201 198 199 200 3syl φ 0 ran Q i 0 M Q i = 0
202 197 201 mpbird φ 0 ran Q
203 202 adantr φ s = 0 0 ran Q
204 181 203 eqeltrd φ s = 0 s ran Q
205 12 178 180 204 fourierdlem12 φ s = 0 i 0 ..^ M ¬ s Q i Q i + 1
206 205 an32s φ i 0 ..^ M s = 0 ¬ s Q i Q i + 1
207 206 adantlr φ i 0 ..^ M s Q i Q i + 1 s = 0 ¬ s Q i Q i + 1
208 177 207 pm2.65da φ i 0 ..^ M s Q i Q i + 1 ¬ s = 0
209 208 adantlr φ i 0 ..^ M V i + 1 = X s Q i Q i + 1 ¬ s = 0
210 209 iffalsed φ i 0 ..^ M V i + 1 = X s Q i Q i + 1 if s = 0 0 F X + s if 0 < s Y W s = F X + s if 0 < s Y W s
211 elioore s Q i Q i + 1 s
212 211 adantl φ i 0 ..^ M V i + 1 = X s Q i Q i + 1 s
213 0red φ i 0 ..^ M V i + 1 = X s Q i Q i + 1 0
214 elioo3g s Q i Q i + 1 Q i * Q i + 1 * s * Q i < s s < Q i + 1
215 214 biimpi s Q i Q i + 1 Q i * Q i + 1 * s * Q i < s s < Q i + 1
216 215 simprrd s Q i Q i + 1 s < Q i + 1
217 216 adantl φ i 0 ..^ M V i + 1 = X s Q i Q i + 1 s < Q i + 1
218 175 adantr φ i 0 ..^ M V i + 1 = X s Q i Q i + 1 Q i + 1 = 0
219 217 218 breqtrd φ i 0 ..^ M V i + 1 = X s Q i Q i + 1 s < 0
220 212 213 219 ltnsymd φ i 0 ..^ M V i + 1 = X s Q i Q i + 1 ¬ 0 < s
221 220 iffalsed φ i 0 ..^ M V i + 1 = X s Q i Q i + 1 if 0 < s Y W = W
222 221 oveq2d φ i 0 ..^ M V i + 1 = X s Q i Q i + 1 F X + s if 0 < s Y W = F X + s W
223 222 oveq1d φ i 0 ..^ M V i + 1 = X s Q i Q i + 1 F X + s if 0 < s Y W s = F X + s W s
224 51 ad2antrr φ i 0 ..^ M V i + 1 = X s Q i Q i + 1 V i *
225 1 rexrd φ X *
226 225 ad3antrrr φ i 0 ..^ M V i + 1 = X s Q i Q i + 1 X *
227 166 ad2antrr φ i 0 ..^ M V i + 1 = X s Q i Q i + 1 X
228 227 212 readdcld φ i 0 ..^ M V i + 1 = X s Q i Q i + 1 X + s
229 120 adantr φ i 0 ..^ M X
230 iccssre π π π π
231 19 18 230 mp2an π π
232 231 61 sstri π π
233 188 138 eqeltrd φ i 0 M Q i π π
234 17 233 sylan2 φ i 0 ..^ M Q i π π
235 232 234 sselid φ i 0 ..^ M Q i
236 229 235 addcomd φ i 0 ..^ M X + Q i = Q i + X
237 149 oveq1d φ i 0 ..^ M Q i + X = V i - X + X
238 29 recnd φ i 0 ..^ M V i
239 238 229 npcand φ i 0 ..^ M V i - X + X = V i
240 236 237 239 3eqtrrd φ i 0 ..^ M V i = X + Q i
241 240 adantr φ i 0 ..^ M s Q i Q i + 1 V i = X + Q i
242 149 147 eqeltrd φ i 0 ..^ M Q i
243 242 adantr φ i 0 ..^ M s Q i Q i + 1 Q i
244 211 adantl φ i 0 ..^ M s Q i Q i + 1 s
245 1 ad2antrr φ i 0 ..^ M s Q i Q i + 1 X
246 215 simprld s Q i Q i + 1 Q i < s
247 246 adantl φ i 0 ..^ M s Q i Q i + 1 Q i < s
248 243 244 245 247 ltadd2dd φ i 0 ..^ M s Q i Q i + 1 X + Q i < X + s
249 241 248 eqbrtrd φ i 0 ..^ M s Q i Q i + 1 V i < X + s
250 249 adantlr φ i 0 ..^ M V i + 1 = X s Q i Q i + 1 V i < X + s
251 ltaddneg s X s < 0 X + s < X
252 212 227 251 syl2anc φ i 0 ..^ M V i + 1 = X s Q i Q i + 1 s < 0 X + s < X
253 219 252 mpbid φ i 0 ..^ M V i + 1 = X s Q i Q i + 1 X + s < X
254 224 226 228 250 253 eliood φ i 0 ..^ M V i + 1 = X s Q i Q i + 1 X + s V i X
255 fvres X + s V i X F V i X X + s = F X + s
256 255 eqcomd X + s V i X F X + s = F V i X X + s
257 254 256 syl φ i 0 ..^ M V i + 1 = X s Q i Q i + 1 F X + s = F V i X X + s
258 257 oveq1d φ i 0 ..^ M V i + 1 = X s Q i Q i + 1 F X + s W = F V i X X + s W
259 258 oveq1d φ i 0 ..^ M V i + 1 = X s Q i Q i + 1 F X + s W s = F V i X X + s W s
260 210 223 259 3eqtrd φ i 0 ..^ M V i + 1 = X s Q i Q i + 1 if s = 0 0 F X + s if 0 < s Y W s = F V i X X + s W s
261 176 260 mpteq12dva φ i 0 ..^ M V i + 1 = X s Q i Q i + 1 if s = 0 0 F X + s if 0 < s Y W s = s V i X 0 F V i X X + s W s
262 109 145 261 3eqtrd φ i 0 ..^ M V i + 1 = X H Q i Q i + 1 = s V i X 0 F V i X X + s W s
263 262 175 oveq12d φ i 0 ..^ M V i + 1 = X H Q i Q i + 1 lim Q i + 1 = s V i X 0 F V i X X + s W s lim 0
264 104 107 263 3eltr4d φ i 0 ..^ M V i + 1 = X A H Q i Q i + 1 lim Q i + 1
265 eqid s Q i Q i + 1 F X + s if 0 < s Y W = s Q i Q i + 1 F X + s if 0 < s Y W
266 eqid s Q i Q i + 1 s = s Q i Q i + 1 s
267 eqid s Q i Q i + 1 F X + s if 0 < s Y W s = s Q i Q i + 1 F X + s if 0 < s Y W s
268 3 adantr φ s Q i Q i + 1 F :
269 1 adantr φ s Q i Q i + 1 X
270 211 adantl φ s Q i Q i + 1 s
271 269 270 readdcld φ s Q i Q i + 1 X + s
272 268 271 ffvelrnd φ s Q i Q i + 1 F X + s
273 272 recnd φ s Q i Q i + 1 F X + s
274 273 adantlr φ i 0 ..^ M s Q i Q i + 1 F X + s
275 274 3adantl3 φ i 0 ..^ M ¬ V i + 1 = X s Q i Q i + 1 F X + s
276 5 recnd φ Y
277 limccl F −∞ X lim X
278 277 6 sselid φ W
279 276 278 ifcld φ if 0 < s Y W
280 279 adantr φ s Q i Q i + 1 if 0 < s Y W
281 280 3ad2antl1 φ i 0 ..^ M ¬ V i + 1 = X s Q i Q i + 1 if 0 < s Y W
282 275 281 subcld φ i 0 ..^ M ¬ V i + 1 = X s Q i Q i + 1 F X + s if 0 < s Y W
283 211 recnd s Q i Q i + 1 s
284 283 adantl φ i 0 ..^ M ¬ V i + 1 = X s Q i Q i + 1 s
285 velsn s 0 s = 0
286 208 285 sylnibr φ i 0 ..^ M s Q i Q i + 1 ¬ s 0
287 286 3adantl3 φ i 0 ..^ M ¬ V i + 1 = X s Q i Q i + 1 ¬ s 0
288 284 287 eldifd φ i 0 ..^ M ¬ V i + 1 = X s Q i Q i + 1 s 0
289 eqid s Q i Q i + 1 F X + s = s Q i Q i + 1 F X + s
290 eqid s Q i Q i + 1 W = s Q i Q i + 1 W
291 eqid s Q i Q i + 1 F X + s W = s Q i Q i + 1 F X + s W
292 278 ad2antrr φ i 0 ..^ M s Q i Q i + 1 W
293 3 adantr φ i 0 ..^ M F :
294 ioossre Q i Q i + 1
295 294 a1i φ i 0 ..^ M Q i Q i + 1
296 51 adantr φ i 0 ..^ M s Q i Q i + 1 V i *
297 165 rexrd φ i 0 ..^ M V i + 1 *
298 297 adantr φ i 0 ..^ M s Q i Q i + 1 V i + 1 *
299 271 adantlr φ i 0 ..^ M s Q i Q i + 1 X + s
300 198 adantr φ i 0 ..^ M Q : 0 M
301 300 160 ffvelrnd φ i 0 ..^ M Q i + 1
302 301 adantr φ i 0 ..^ M s Q i Q i + 1 Q i + 1
303 216 adantl φ i 0 ..^ M s Q i Q i + 1 s < Q i + 1
304 244 302 245 303 ltadd2dd φ i 0 ..^ M s Q i Q i + 1 X + s < X + Q i + 1
305 168 oveq2d φ i 0 ..^ M X + Q i + 1 = X + V i + 1 - X
306 165 recnd φ i 0 ..^ M V i + 1
307 229 306 pncan3d φ i 0 ..^ M X + V i + 1 - X = V i + 1
308 305 307 eqtrd φ i 0 ..^ M X + Q i + 1 = V i + 1
309 308 adantr φ i 0 ..^ M s Q i Q i + 1 X + Q i + 1 = V i + 1
310 304 309 breqtrd φ i 0 ..^ M s Q i Q i + 1 X + s < V i + 1
311 296 298 299 249 310 eliood φ i 0 ..^ M s Q i Q i + 1 X + s V i V i + 1
312 ioossre V i V i + 1
313 312 a1i φ i 0 ..^ M V i V i + 1
314 244 303 ltned φ i 0 ..^ M s Q i Q i + 1 s Q i + 1
315 308 eqcomd φ i 0 ..^ M V i + 1 = X + Q i + 1
316 315 oveq2d φ i 0 ..^ M F V i V i + 1 lim V i + 1 = F V i V i + 1 lim X + Q i + 1
317 10 316 eleqtrd φ i 0 ..^ M R F V i V i + 1 lim X + Q i + 1
318 301 recnd φ i 0 ..^ M Q i + 1
319 293 166 295 289 311 313 314 317 318 fourierdlem53 φ i 0 ..^ M R s Q i Q i + 1 F X + s lim Q i + 1
320 ioosscn Q i Q i + 1
321 320 a1i φ i 0 ..^ M Q i Q i + 1
322 278 adantr φ i 0 ..^ M W
323 290 321 322 318 constlimc φ i 0 ..^ M W s Q i Q i + 1 W lim Q i + 1
324 289 290 291 274 292 319 323 sublimc φ i 0 ..^ M R W s Q i Q i + 1 F X + s W lim Q i + 1
325 324 adantr φ i 0 ..^ M V i + 1 < X R W s Q i Q i + 1 F X + s W lim Q i + 1
326 iftrue V i + 1 < X if V i + 1 < X W Y = W
327 326 oveq2d V i + 1 < X R if V i + 1 < X W Y = R W
328 327 adantl φ i 0 ..^ M V i + 1 < X R if V i + 1 < X W Y = R W
329 211 adantl φ i 0 ..^ M V i + 1 < X s Q i Q i + 1 s
330 0red φ i 0 ..^ M V i + 1 < X s Q i Q i + 1 0
331 301 ad2antrr φ i 0 ..^ M V i + 1 < X s Q i Q i + 1 Q i + 1
332 216 adantl φ i 0 ..^ M V i + 1 < X s Q i Q i + 1 s < Q i + 1
333 168 adantr φ i 0 ..^ M V i + 1 < X Q i + 1 = V i + 1 X
334 165 adantr φ i 0 ..^ M V i + 1 < X V i + 1
335 1 ad2antrr φ i 0 ..^ M V i + 1 < X X
336 simpr φ i 0 ..^ M V i + 1 < X V i + 1 < X
337 334 335 336 ltled φ i 0 ..^ M V i + 1 < X V i + 1 X
338 334 335 suble0d φ i 0 ..^ M V i + 1 < X V i + 1 X 0 V i + 1 X
339 337 338 mpbird φ i 0 ..^ M V i + 1 < X V i + 1 X 0
340 333 339 eqbrtrd φ i 0 ..^ M V i + 1 < X Q i + 1 0
341 340 adantr φ i 0 ..^ M V i + 1 < X s Q i Q i + 1 Q i + 1 0
342 329 331 330 332 341 ltletrd φ i 0 ..^ M V i + 1 < X s Q i Q i + 1 s < 0
343 329 330 342 ltnsymd φ i 0 ..^ M V i + 1 < X s Q i Q i + 1 ¬ 0 < s
344 343 iffalsed φ i 0 ..^ M V i + 1 < X s Q i Q i + 1 if 0 < s Y W = W
345 344 oveq2d φ i 0 ..^ M V i + 1 < X s Q i Q i + 1 F X + s if 0 < s Y W = F X + s W
346 345 mpteq2dva φ i 0 ..^ M V i + 1 < X s Q i Q i + 1 F X + s if 0 < s Y W = s Q i Q i + 1 F X + s W
347 346 oveq1d φ i 0 ..^ M V i + 1 < X s Q i Q i + 1 F X + s if 0 < s Y W lim Q i + 1 = s Q i Q i + 1 F X + s W lim Q i + 1
348 325 328 347 3eltr4d φ i 0 ..^ M V i + 1 < X R if V i + 1 < X W Y s Q i Q i + 1 F X + s if 0 < s Y W lim Q i + 1
349 348 3adantl3 φ i 0 ..^ M ¬ V i + 1 = X V i + 1 < X R if V i + 1 < X W Y s Q i Q i + 1 F X + s if 0 < s Y W lim Q i + 1
350 simpl1 φ i 0 ..^ M ¬ V i + 1 = X ¬ V i + 1 < X φ
351 simpl2 φ i 0 ..^ M ¬ V i + 1 = X ¬ V i + 1 < X i 0 ..^ M
352 1 ad2antrr φ i 0 ..^ M ¬ V i + 1 < X X
353 352 3adantl3 φ i 0 ..^ M ¬ V i + 1 = X ¬ V i + 1 < X X
354 165 adantr φ i 0 ..^ M ¬ V i + 1 < X V i + 1
355 354 3adantl3 φ i 0 ..^ M ¬ V i + 1 = X ¬ V i + 1 < X V i + 1
356 neqne ¬ V i + 1 = X V i + 1 X
357 356 necomd ¬ V i + 1 = X X V i + 1
358 357 adantr ¬ V i + 1 = X ¬ V i + 1 < X X V i + 1
359 358 3ad2antl3 φ i 0 ..^ M ¬ V i + 1 = X ¬ V i + 1 < X X V i + 1
360 simpr φ i 0 ..^ M ¬ V i + 1 = X ¬ V i + 1 < X ¬ V i + 1 < X
361 353 355 359 360 lttri5d φ i 0 ..^ M ¬ V i + 1 = X ¬ V i + 1 < X X < V i + 1
362 eqid s Q i Q i + 1 if 0 < s Y W = s Q i Q i + 1 if 0 < s Y W
363 274 adantlr φ i 0 ..^ M X < V i + 1 s Q i Q i + 1 F X + s
364 279 ad3antrrr φ i 0 ..^ M X < V i + 1 s Q i Q i + 1 if 0 < s Y W
365 319 adantr φ i 0 ..^ M X < V i + 1 R s Q i Q i + 1 F X + s lim Q i + 1
366 eqid s Q i Q i + 1 Y = s Q i Q i + 1 Y
367 276 adantr φ i 0 ..^ M Y
368 366 321 367 318 constlimc φ i 0 ..^ M Y s Q i Q i + 1 Y lim Q i + 1
369 368 adantr φ i 0 ..^ M X < V i + 1 Y s Q i Q i + 1 Y lim Q i + 1
370 1 ad2antrr φ i 0 ..^ M X < V i + 1 X
371 165 adantr φ i 0 ..^ M X < V i + 1 V i + 1
372 simpr φ i 0 ..^ M X < V i + 1 X < V i + 1
373 370 371 372 ltnsymd φ i 0 ..^ M X < V i + 1 ¬ V i + 1 < X
374 373 iffalsed φ i 0 ..^ M X < V i + 1 if V i + 1 < X W Y = Y
375 0red φ i 0 ..^ M X < V i + 1 s Q i Q i + 1 0
376 242 ad2antrr φ i 0 ..^ M X < V i + 1 s Q i Q i + 1 Q i
377 211 adantl φ i 0 ..^ M X < V i + 1 s Q i Q i + 1 s
378 192 eqcomd φ 0 = X X
379 378 ad2antrr φ i 0 ..^ M X < V i + 1 0 = X X
380 29 adantr φ i 0 ..^ M X < V i + 1 V i
381 51 ad2antrr φ i 0 ..^ M X < V i + 1 ¬ X V i V i *
382 297 ad2antrr φ i 0 ..^ M X < V i + 1 ¬ X V i V i + 1 *
383 166 ad2antrr φ i 0 ..^ M X < V i + 1 ¬ X V i X
384 simpr φ i 0 ..^ M ¬ X V i ¬ X V i
385 29 adantr φ i 0 ..^ M ¬ X V i V i
386 1 ad2antrr φ i 0 ..^ M ¬ X V i X
387 385 386 ltnled φ i 0 ..^ M ¬ X V i V i < X ¬ X V i
388 384 387 mpbird φ i 0 ..^ M ¬ X V i V i < X
389 388 adantlr φ i 0 ..^ M X < V i + 1 ¬ X V i V i < X
390 simplr φ i 0 ..^ M X < V i + 1 ¬ X V i X < V i + 1
391 381 382 383 389 390 eliood φ i 0 ..^ M X < V i + 1 ¬ X V i X V i V i + 1
392 2 8 9 4 fourierdlem12 φ i 0 ..^ M ¬ X V i V i + 1
393 392 ad2antrr φ i 0 ..^ M X < V i + 1 ¬ X V i ¬ X V i V i + 1
394 391 393 condan φ i 0 ..^ M X < V i + 1 X V i
395 370 380 370 394 lesub1dd φ i 0 ..^ M X < V i + 1 X X V i X
396 379 395 eqbrtrd φ i 0 ..^ M X < V i + 1 0 V i X
397 149 eqcomd φ i 0 ..^ M V i X = Q i
398 397 adantr φ i 0 ..^ M X < V i + 1 V i X = Q i
399 396 398 breqtrd φ i 0 ..^ M X < V i + 1 0 Q i
400 399 adantr φ i 0 ..^ M X < V i + 1 s Q i Q i + 1 0 Q i
401 246 adantl φ i 0 ..^ M X < V i + 1 s Q i Q i + 1 Q i < s
402 375 376 377 400 401 lelttrd φ i 0 ..^ M X < V i + 1 s Q i Q i + 1 0 < s
403 402 iftrued φ i 0 ..^ M X < V i + 1 s Q i Q i + 1 if 0 < s Y W = Y
404 403 mpteq2dva φ i 0 ..^ M X < V i + 1 s Q i Q i + 1 if 0 < s Y W = s Q i Q i + 1 Y
405 404 oveq1d φ i 0 ..^ M X < V i + 1 s Q i Q i + 1 if 0 < s Y W lim Q i + 1 = s Q i Q i + 1 Y lim Q i + 1
406 369 374 405 3eltr4d φ i 0 ..^ M X < V i + 1 if V i + 1 < X W Y s Q i Q i + 1 if 0 < s Y W lim Q i + 1
407 289 362 265 363 364 365 406 sublimc φ i 0 ..^ M X < V i + 1 R if V i + 1 < X W Y s Q i Q i + 1 F X + s if 0 < s Y W lim Q i + 1
408 350 351 361 407 syl21anc φ i 0 ..^ M ¬ V i + 1 = X ¬ V i + 1 < X R if V i + 1 < X W Y s Q i Q i + 1 F X + s if 0 < s Y W lim Q i + 1
409 349 408 pm2.61dan φ i 0 ..^ M ¬ V i + 1 = X R if V i + 1 < X W Y s Q i Q i + 1 F X + s if 0 < s Y W lim Q i + 1
410 321 266 318 idlimc φ i 0 ..^ M Q i + 1 s Q i Q i + 1 s lim Q i + 1
411 410 3adant3 φ i 0 ..^ M ¬ V i + 1 = X Q i + 1 s Q i Q i + 1 s lim Q i + 1
412 168 3adant3 φ i 0 ..^ M ¬ V i + 1 = X Q i + 1 = V i + 1 X
413 306 3adant3 φ i 0 ..^ M ¬ V i + 1 = X V i + 1
414 229 3adant3 φ i 0 ..^ M ¬ V i + 1 = X X
415 356 3ad2ant3 φ i 0 ..^ M ¬ V i + 1 = X V i + 1 X
416 413 414 415 subne0d φ i 0 ..^ M ¬ V i + 1 = X V i + 1 X 0
417 412 416 eqnetrd φ i 0 ..^ M ¬ V i + 1 = X Q i + 1 0
418 208 3adantl3 φ i 0 ..^ M ¬ V i + 1 = X s Q i Q i + 1 ¬ s = 0
419 418 neqned φ i 0 ..^ M ¬ V i + 1 = X s Q i Q i + 1 s 0
420 265 266 267 282 288 409 411 417 419 divlimc φ i 0 ..^ M ¬ V i + 1 = X R if V i + 1 < X W Y Q i + 1 s Q i Q i + 1 F X + s if 0 < s Y W s lim Q i + 1
421 iffalse ¬ V i + 1 = X if V i + 1 = X E R if V i + 1 < X W Y Q i + 1 = R if V i + 1 < X W Y Q i + 1
422 16 421 eqtrid ¬ V i + 1 = X A = R if V i + 1 < X W Y Q i + 1
423 422 3ad2ant3 φ i 0 ..^ M ¬ V i + 1 = X A = R if V i + 1 < X W Y Q i + 1
424 ioossre −∞ X
425 424 a1i φ −∞ X
426 3 425 fssresd φ F −∞ X : −∞ X
427 424 62 sstrid φ −∞ X
428 49 a1i φ −∞ *
429 1 mnfltd φ −∞ < X
430 66 428 1 429 lptioo2cn φ X limPt TopOpen fld −∞ X
431 426 427 430 6 limcrecl φ W
432 3 1 5 431 7 fourierdlem9 φ H : π π
433 432 adantr φ i 0 ..^ M H : π π
434 433 143 feqresmpt φ i 0 ..^ M H Q i Q i + 1 = s Q i Q i + 1 H s
435 143 sselda φ i 0 ..^ M s Q i Q i + 1 s π π
436 0cnd φ i 0 ..^ M s Q i Q i + 1 0
437 279 ad2antrr φ i 0 ..^ M s Q i Q i + 1 if 0 < s Y W
438 274 437 subcld φ i 0 ..^ M s Q i Q i + 1 F X + s if 0 < s Y W
439 283 adantl φ i 0 ..^ M s Q i Q i + 1 s
440 208 neqned φ i 0 ..^ M s Q i Q i + 1 s 0
441 438 439 440 divcld φ i 0 ..^ M s Q i Q i + 1 F X + s if 0 < s Y W s
442 436 441 ifcld φ i 0 ..^ M s Q i Q i + 1 if s = 0 0 F X + s if 0 < s Y W s
443 7 fvmpt2 s π π if s = 0 0 F X + s if 0 < s Y W s H s = if s = 0 0 F X + s if 0 < s Y W s
444 435 442 443 syl2anc φ i 0 ..^ M s Q i Q i + 1 H s = if s = 0 0 F X + s if 0 < s Y W s
445 208 iffalsed φ i 0 ..^ M s Q i Q i + 1 if s = 0 0 F X + s if 0 < s Y W s = F X + s if 0 < s Y W s
446 444 445 eqtrd φ i 0 ..^ M s Q i Q i + 1 H s = F X + s if 0 < s Y W s
447 446 mpteq2dva φ i 0 ..^ M s Q i Q i + 1 H s = s Q i Q i + 1 F X + s if 0 < s Y W s
448 434 447 eqtrd φ i 0 ..^ M H Q i Q i + 1 = s Q i Q i + 1 F X + s if 0 < s Y W s
449 448 3adant3 φ i 0 ..^ M ¬ V i + 1 = X H Q i Q i + 1 = s Q i Q i + 1 F X + s if 0 < s Y W s
450 449 oveq1d φ i 0 ..^ M ¬ V i + 1 = X H Q i Q i + 1 lim Q i + 1 = s Q i Q i + 1 F X + s if 0 < s Y W s lim Q i + 1
451 420 423 450 3eltr4d φ i 0 ..^ M ¬ V i + 1 = X A H Q i Q i + 1 lim Q i + 1
452 451 3expa φ i 0 ..^ M ¬ V i + 1 = X A H Q i Q i + 1 lim Q i + 1
453 264 452 pm2.61dan φ i 0 ..^ M A H Q i Q i + 1 lim Q i + 1