Metamath Proof Explorer


Theorem fourierdlem60

Description: Given a differentiable function F , with finite limit of the derivative at A the derived function H has a limit at 0 . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem60.a φA
fourierdlem60.b φB
fourierdlem60.altb φA<B
fourierdlem60.f φF:AB
fourierdlem60.y φYFlimB
fourierdlem60.g G=DF
fourierdlem60.domg φdomG=AB
fourierdlem60.e φEGlimB
fourierdlem60.h H=sAB0FB+sYs
fourierdlem60.n N=sAB0FB+sY
fourierdlem60.d D=sAB0s
Assertion fourierdlem60 φEHlim0

Proof

Step Hyp Ref Expression
1 fourierdlem60.a φA
2 fourierdlem60.b φB
3 fourierdlem60.altb φA<B
4 fourierdlem60.f φF:AB
5 fourierdlem60.y φYFlimB
6 fourierdlem60.g G=DF
7 fourierdlem60.domg φdomG=AB
8 fourierdlem60.e φEGlimB
9 fourierdlem60.h H=sAB0FB+sYs
10 fourierdlem60.n N=sAB0FB+sY
11 fourierdlem60.d D=sAB0s
12 1 2 resubcld φAB
13 12 rexrd φAB*
14 0red φ0
15 1 2 sublt0d φAB<0A<B
16 3 15 mpbird φAB<0
17 4 adantr φsAB0F:AB
18 1 rexrd φA*
19 18 adantr φsAB0A*
20 2 rexrd φB*
21 20 adantr φsAB0B*
22 2 adantr φsAB0B
23 elioore sAB0s
24 23 adantl φsAB0s
25 22 24 readdcld φsAB0B+s
26 2 recnd φB
27 1 recnd φA
28 26 27 pncan3d φB+A-B=A
29 28 eqcomd φA=B+A-B
30 29 adantr φsAB0A=B+A-B
31 12 adantr φsAB0AB
32 13 adantr φsAB0AB*
33 0xr 0*
34 33 a1i φsAB00*
35 simpr φsAB0sAB0
36 32 34 35 ioogtlbd φsAB0AB<s
37 31 24 22 36 ltadd2dd φsAB0B+A-B<B+s
38 30 37 eqbrtrd φsAB0A<B+s
39 0red φsAB00
40 32 34 35 iooltubd φsAB0s<0
41 24 39 22 40 ltadd2dd φsAB0B+s<B+0
42 26 addridd φB+0=B
43 42 adantr φsAB0B+0=B
44 41 43 breqtrd φsAB0B+s<B
45 19 21 25 38 44 eliood φsAB0B+sAB
46 17 45 ffvelcdmd φsAB0FB+s
47 ioossre AB
48 47 a1i φAB
49 ax-resscn
50 48 49 sstrdi φAB
51 eqid TopOpenfld=TopOpenfld
52 51 18 2 3 lptioo2cn φBlimPtTopOpenfldAB
53 4 50 52 5 limcrecl φY
54 53 adantr φsAB0Y
55 46 54 resubcld φsAB0FB+sY
56 55 10 fmptd φN:AB0
57 24 11 fmptd φD:AB0
58 10 oveq2i DN=dsAB0FB+sYds
59 58 a1i φDN=dsAB0FB+sYds
60 59 dmeqd φdomN=domdsAB0FB+sYds
61 reelprrecn
62 61 a1i φ
63 46 recnd φsAB0FB+s
64 dvfre F:ABABF:domF
65 4 48 64 syl2anc φF:domF
66 6 a1i φG=DF
67 66 feq1d φG:domFF:domF
68 65 67 mpbird φG:domF
69 68 adantr φsAB0G:domF
70 66 eqcomd φDF=G
71 70 dmeqd φdomF=domG
72 71 7 eqtr2d φAB=domF
73 72 adantr φsAB0AB=domF
74 45 73 eleqtrd φsAB0B+sdomF
75 69 74 ffvelcdmd φsAB0GB+s
76 1red φsAB01
77 4 ffvelcdmda φxABFx
78 77 recnd φxABFx
79 72 feq2d φG:ABG:domF
80 68 79 mpbird φG:AB
81 80 ffvelcdmda φxABGx
82 26 adantr φsAB0B
83 26 adantr φsB
84 0red φs0
85 62 26 dvmptc φdsBds=s0
86 ioossre AB0
87 86 a1i φAB0
88 tgioo4 topGenran.=TopOpenfld𝑡
89 iooretop AB0topGenran.
90 89 a1i φAB0topGenran.
91 62 83 84 85 87 88 51 90 dvmptres φdsAB0Bds=sAB00
92 24 recnd φsAB0s
93 recn ss
94 93 adantl φss
95 1red φs1
96 62 dvmptid φdssds=s1
97 62 94 95 96 87 88 51 90 dvmptres φdsAB0sds=sAB01
98 62 82 39 91 92 76 97 dvmptadd φdsAB0B+sds=sAB00+1
99 0p1e1 0+1=1
100 99 mpteq2i sAB00+1=sAB01
101 98 100 eqtrdi φdsAB0B+sds=sAB01
102 4 feqmptd φF=xABFx
103 102 eqcomd φxABFx=F
104 103 oveq2d φdxABFxdx=DF
105 80 feqmptd φG=xABGx
106 104 70 105 3eqtrd φdxABFxdx=xABGx
107 fveq2 x=B+sFx=FB+s
108 fveq2 x=B+sGx=GB+s
109 62 62 45 76 78 81 101 106 107 108 dvmptco φdsAB0FB+sds=sAB0GB+s1
110 75 recnd φsAB0GB+s
111 110 mulridd φsAB0GB+s1=GB+s
112 111 mpteq2dva φsAB0GB+s1=sAB0GB+s
113 109 112 eqtrd φdsAB0FB+sds=sAB0GB+s
114 limccl FlimB
115 114 5 sselid φY
116 115 adantr φsAB0Y
117 115 adantr φsY
118 62 115 dvmptc φdsYds=s0
119 62 117 84 118 87 88 51 90 dvmptres φdsAB0Yds=sAB00
120 62 63 75 113 116 34 119 dvmptsub φdsAB0FB+sYds=sAB0GB+s0
121 110 subid1d φsAB0GB+s0=GB+s
122 121 mpteq2dva φsAB0GB+s0=sAB0GB+s
123 120 122 eqtrd φdsAB0FB+sYds=sAB0GB+s
124 123 dmeqd φdomdsAB0FB+sYds=domsAB0GB+s
125 75 ralrimiva φsAB0GB+s
126 dmmptg sAB0GB+sdomsAB0GB+s=AB0
127 125 126 syl φdomsAB0GB+s=AB0
128 60 124 127 3eqtrd φdomN=AB0
129 11 a1i φD=sAB0s
130 129 oveq2d φDD=dsAB0sds
131 130 97 eqtrd φDD=sAB01
132 131 dmeqd φdomD=domsAB01
133 76 ralrimiva φsAB01
134 dmmptg sAB01domsAB01=AB0
135 133 134 syl φdomsAB01=AB0
136 132 135 eqtrd φdomD=AB0
137 eqid sAB0FB+s=sAB0FB+s
138 eqid sAB0Y=sAB0Y
139 eqid sAB0FB+sY=sAB0FB+sY
140 45 adantrr φsAB0B+sBB+sAB
141 eqid sAB0B=sAB0B
142 eqid sAB0s=sAB0s
143 eqid sAB0B+s=sAB0B+s
144 87 49 sstrdi φAB0
145 14 recnd φ0
146 141 144 26 145 constlimc φBsAB0Blim0
147 144 142 145 idlimc φ0sAB0slim0
148 141 142 143 82 92 146 147 addlimc φB+0sAB0B+slim0
149 42 148 eqeltrrd φBsAB0B+slim0
150 102 oveq1d φFlimB=xABFxlimB
151 5 150 eleqtrd φYxABFxlimB
152 simplrr φsAB0B+s=B¬FB+s=YB+s=B
153 25 44 ltned φsAB0B+sB
154 153 neneqd φsAB0¬B+s=B
155 154 adantrr φsAB0B+s=B¬B+s=B
156 155 adantr φsAB0B+s=B¬FB+s=Y¬B+s=B
157 152 156 condan φsAB0B+s=BFB+s=Y
158 140 78 149 151 107 157 limcco φYsAB0FB+slim0
159 138 144 115 145 constlimc φYsAB0Ylim0
160 137 138 139 63 116 158 159 sublimc φYYsAB0FB+sYlim0
161 115 subidd φYY=0
162 10 eqcomi sAB0FB+sY=N
163 162 oveq1i sAB0FB+sYlim0=Nlim0
164 163 a1i φsAB0FB+sYlim0=Nlim0
165 160 161 164 3eltr3d φ0Nlim0
166 144 11 145 idlimc φ0Dlim0
167 ubioo ¬0AB0
168 167 a1i φ¬0AB0
169 mptresid IAB0=sAB0s
170 129 169 eqtr4di φD=IAB0
171 170 rneqd φranD=ranIAB0
172 rnresi ranIAB0=AB0
173 171 172 eqtr2di φAB0=ranD
174 168 173 neleqtrd φ¬0ranD
175 0ne1 01
176 175 neii ¬0=1
177 elsng 0010=1
178 14 177 syl φ010=1
179 176 178 mtbiri φ¬01
180 131 rneqd φranD=ransAB01
181 eqid sAB01=sAB01
182 33 a1i φ0*
183 ioon0 AB*0*AB0AB<0
184 13 182 183 syl2anc φAB0AB<0
185 16 184 mpbird φAB0
186 181 185 rnmptc φransAB01=1
187 180 186 eqtr2d φ1=ranD
188 179 187 neleqtrd φ¬0ranD
189 81 recnd φxABGx
190 105 oveq1d φGlimB=xABGxlimB
191 8 190 eleqtrd φExABGxlimB
192 simplrr φsAB0B+s=B¬GB+s=EB+s=B
193 155 adantr φsAB0B+s=B¬GB+s=E¬B+s=B
194 192 193 condan φsAB0B+s=BGB+s=E
195 140 189 149 191 108 194 limcco φEsAB0GB+slim0
196 110 div1d φsAB0GB+s1=GB+s
197 58 123 eqtrid φDN=sAB0GB+s
198 197 adantr φsAB0DN=sAB0GB+s
199 198 fveq1d φsAB0Ns=sAB0GB+ss
200 fvmpt4 sAB0GB+ssAB0GB+ss=GB+s
201 35 75 200 syl2anc φsAB0sAB0GB+ss=GB+s
202 199 201 eqtr2d φsAB0GB+s=Ns
203 131 fveq1d φDs=sAB01s
204 203 adantr φsAB0Ds=sAB01s
205 fvmpt4 sAB01sAB01s=1
206 35 76 205 syl2anc φsAB0sAB01s=1
207 204 206 eqtr2d φsAB01=Ds
208 202 207 oveq12d φsAB0GB+s1=NsDs
209 196 208 eqtr3d φsAB0GB+s=NsDs
210 209 mpteq2dva φsAB0GB+s=sAB0NsDs
211 210 oveq1d φsAB0GB+slim0=sAB0NsDslim0
212 195 211 eleqtrd φEsAB0NsDslim0
213 13 14 16 56 57 128 136 165 166 174 188 212 lhop2 φEsAB0NsDslim0
214 10 fvmpt2 sAB0FB+sYNs=FB+sY
215 35 55 214 syl2anc φsAB0Ns=FB+sY
216 11 fvmpt2 sAB0sAB0Ds=s
217 35 35 216 syl2anc φsAB0Ds=s
218 215 217 oveq12d φsAB0NsDs=FB+sYs
219 218 mpteq2dva φsAB0NsDs=sAB0FB+sYs
220 219 9 eqtr4di φsAB0NsDs=H
221 220 oveq1d φsAB0NsDslim0=Hlim0
222 213 221 eleqtrd φEHlim0